5,371 research outputs found
Finding diamonds in the rough: Targeted Sub-threshold Search for Strongly-lensed Gravitational-wave Events
Strong gravitational lensing of gravitational waves can produce duplicate
signals separated in time with different amplitudes. We consider the case in
which strong lensing produces identifiable gravitational-wave events and weaker
sub-threshold signals hidden in the noise background. We present a search
method for the sub-threshold signals using reduced template banks targeting
specific confirmed gravitational-wave events. We apply the method to all events
from Advanced LIGO's first and second observing run O1/O2. Using GW150914 as an
example, we show that the method effectively reduces the noise background and
raises the significance of (near-) sub-threshold triggers. In the case of
GW150914, we can improve the sensitive distance by . Finally,
we present the top possible lensed candidates for O1/O2 gravitational-wave
events that passed our nominal significance threshold of False-Alarm-Rate days
Treatment with ActRIIB-mFc Produces Myofiber Growth and Improves Lifespan in the \u3cem\u3eActa1\u3c/em\u3e H40Y Murine Model of Nemaline Myopathy
GPER-induced signaling is essential for the survival of breast cancer stem cells.
G protein-coupled estrogen receptor-1 (GPER), a member of the G protein-coupled receptor (GPCR) superfamily, mediates estrogen-induced proliferation of normal and malignant breast epithelial cells. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here we showed greater expression of GPER in BCSCs than non-BCSCs of three patient-derived xenografts of ER- /PR+ breast cancers. GPER silencing reduced stemness features of BCSCs as reflected by reduced mammosphere forming capacity in vitro, and tumor growth in vivo with decreased BCSC populations. Comparative phosphoproteomics revealed greater GPER-mediated PKA/BAD signaling in BCSCs. Activation of GPER by its ligands, including tamoxifen (TMX), induced phosphorylation of PKA and BAD-Ser118 to sustain BCSC characteristics. Transfection with a dominant-negative mutant BAD (Ser118Ala) led to reduced cell survival. Taken together, GPER and its downstream signaling play a key role in maintaining the stemness of BCSCs, suggesting that GPER is a potential therapeutic target for eradicating BCSCs
Molecular Adhesion between Cartilage Extracellular Matrix Macromolecules
In this study, we investigated the molecular adhesion between the major constituents of cartilage extracellular matrix, namely, the highly negatively charged proteoglycan aggrecan and the type II/IX/XI fibrillar collagen network, in simulated physiological conditions. Colloidal force spectroscopy was applied to measure the maximum adhesion force and total adhesion energy between aggrecan end-attached spherical tips (end radius R ≈ 2.5 μm) and trypsin-treated cartilage disks with undamaged collagen networks. Studies were carried out in various aqueous solutions to reveal the physical factors that govern aggrecan–collagen adhesion. Increasing both ionic strength and [Ca2+] significantly increased adhesion, highlighting the importance of electrostatic repulsion and Ca2+-mediated ion bridging effects. In addition, we probed how partial enzymatic degradation of the collagen network, which simulates osteoarthritic conditions, affects the aggrecan–collagen interactions. Interestingly, we found a significant increase in aggrecan–collagen adhesion even when there were no detectable changes at the macro- or microscales. It is hypothesized that the aggrecan–collagen adhesion, together with aggrecan–aggrecan self-adhesion, works synergistically to determine the local molecular deformability and energy dissipation of the cartilage matrix, in turn, affecting its macroscopic tissue properties.National Science Foundation (U.S.) (Grant CMMI-0758651)National Institutes of Health (U.S.) (Grant AR60331)United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship (Grant N00244-09-1-0064))Shriners of North AmericaDrexel University (Faculty Start-up Grant
400%/W second harmonic conversion efficiency in -diameter gallium phosphide-on-oxide resonators
Second harmonic conversion from 1550~nm to 775~nm with an efficiency of 400%
W is demonstrated in a gallium phosphide (GaP) on oxide integrated
photonic platform. The platform consists of doubly-resonant, phase-matched ring
resonators with quality factors , low mode volumes , and high nonlinear mode overlaps. Measurements and simulations
indicate that conversion efficiencies can be increased by a factor of 20 by
improving the waveguide-cavity coupling to achieve critical coupling in current
devices.Comment: 13 pages, 6 figure
Closed cosmologies with a perfect fluid and a scalar field
Closed, spatially homogeneous cosmological models with a perfect fluid and a
scalar field with exponential potential are investigated, using dynamical
systems methods. First, we consider the closed Friedmann-Robertson-Walker
models, discussing the global dynamics in detail. Next, we investigate
Kantowski-Sachs models, for which the future and past attractors are
determined. The global asymptotic behaviour of both the
Friedmann-Robertson-Walker and the Kantowski-Sachs models is that they either
expand from an initial singularity, reach a maximum expansion and thereafter
recollapse to a final singularity (for all values of the potential parameter
kappa), or else they expand forever towards a flat power-law inflationary
solution (when kappa^2<2). As an illustration of the intermediate dynamical
behaviour of the Kantowski-Sachs models, we examine the cases of no barotropic
fluid, and of a massless scalar field in detail. We also briefly discuss
Bianchi type IX models.Comment: 15 pages, 10 figure
Software Obfuscation with Symmetric Cryptography
Software protection is of great interest to commercial industry. Millions of dollars and years of research are invested in the development of proprietary algorithms used in software programs. A reverse engineer that successfully reverses another company‘s proprietary algorithms can develop a competing product to market in less time and with less money. The threat is even greater in military applications where adversarial reversers can use reverse engineering on unprotected military software to compromise capabilities on the field or develop their own capabilities with significantly less resources. Thus, it is vital to protect software, especially the software’s sensitive internal algorithms, from adversarial analysis. Software protection through obfuscation is a relatively new research initiative. The mathematical and security community have yet to agree upon a model to describe the problem let alone the metrics used to evaluate the practical solutions proposed by computer scientists. We propose evaluating solutions to obfuscation under the intent protection model, a combination of white-box and black-box protection to reflect how reverse engineers analyze programs using a combination white-box and black-box attacks. In addition, we explore use of experimental methods and metrics in analogous and more mature fields of study such as hardware circuits and cryptography. Finally, we implement a solution under the intent protection model that demonstrates application of the methods and evaluation using the metrics adapted from the aforementioned fields of study to reflect the unique challenges in a software-only software protection technique
Network Analysis with Stochastic Grammars
Digital forensics requires significant manual effort to identify items of evidentiary interest from the ever-increasing volume of data in modern computing systems. One of the tasks digital forensic examiners conduct is mentally extracting and constructing insights from unstructured sequences of events. This research assists examiners with the association and individualization analysis processes that make up this task with the development of a Stochastic Context -Free Grammars (SCFG) knowledge representation for digital forensics analysis of computer network traffic. SCFG is leveraged to provide context to the low-level data collected as evidence and to build behavior profiles. Upon discovering patterns, the analyst can begin the association or individualization process to answer criminal investigative questions. Three contributions resulted from this research. First , domain characteristics suitable for SCFG representation were identified and a step -by- step approach to adapt SCFG to novel domains was developed. Second, a novel iterative graph-based method of identifying similarities in context-free grammars was developed to compare behavior patterns represented as grammars. Finally, the SCFG capabilities were demonstrated in performing association and individualization in reducing the suspect pool and reducing the volume of evidence to examine in a computer network traffic analysis use case
- …
