4 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Determinate Assembly of Tooling Allows Concurrent Design of Airbus Wings and Major Assembly Fixtures

    Full text link
    Most new aircraft programs encounter the challenge of balancing the time required for design optimization with product delivery constraints. The high cost and long lead times of traditional tooling makes it difficult for aircraft manufactures to efficiently meet ever-changing market demands. The large size, low relative stiffness and high positional tolerances required for aircraft components drive the requirement for rigid fixed tooling to maintain the precision part relationships over time. Use of today’s advance 3-Dimensional CAD systems coupled with the high accuracy of CNC machines enables the success of the determinate assembly approach for aircraft tooling. This approach provides the aircraft manufacturer significant lead-time reductions while at the same time it supports enhanced system flexibility. Determinate assembly for aircraft tooling has proven to be highly successful for tooling manufacture on large-scale system such as the A380 and A340-600 wing assembly projects

    Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis

    No full text
    We present a genome-wide association study of ileal Crohn's disease (CD) and two independent replication studies that identify five novel regions of association to CD. Specifically, in addition to the previously established CARD15 and IL23R associations, we report strong associations with independent replication to variation in the genomic regions encoding the PHOX2B, NCF4 and ATG16L1 genes, as well as a predicted gene on 16q24.1 (FAM92B) and an intergenic region on 10q21.1. We further demonstrate that the ATG16L1 gene is expressed in intestinal epithelial cell lines and that functional knock down of this gene abrogates autophagy of Salmonella typhimurium. Together these findings suggest that autophagy and host cell responses to intra-cellular microbes are involved in the pathogenesis of CD

    The DNA sequence of the human X chromosome

    No full text
    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence
    corecore