1,102 research outputs found
Security Estimates for Quadratic Field Based Cryptosystems
We describe implementations for solving the discrete logarithm problem in the
class group of an imaginary quadratic field and in the infrastructure of a real
quadratic field. The algorithms used incorporate improvements over
previously-used algorithms, and extensive numerical results are presented
demonstrating their efficiency. This data is used as the basis for
extrapolations, used to provide recommendations for parameter sizes providing
approximately the same level of security as block ciphers with
and -bit symmetric keys
Stable p-branes in Chern-Simons AdS supergravities
We construct static codimension-two branes in any odd dimension D, with
negative cosmological constant, and show that they are exact solutions of
Chern-Simons (super)gravity theory for (super)AdS coupled to external sources.
The stability of these solutions is analyzed by counting the number of
preserved supersymmetries. It is shown that static massive (D-3)-branes are
unstable unless some suitable gauge fields are added and the brane is extremal.
In particular, in three dimensions, a 0-brane is recognized as the negative
mass counterpart of the BTZ black hole. For these 0-branes, we write explicitly
electromagnetically charged BPS states with various number of preserved
supersymmetries within the OSp(p|2) x OSp(q|2) supergroups. In five dimensions,
we prove that stable 2-branes with electromagnetic charge always exist for the
generic supergroup SU(2,2|N), where N is different than 4. For the special case
N=4, in which the CS supergravity requires the addition of a nontrivial gauge
field configuration in order to preserve maximal number of degrees of freedom,
we show for two different static 2-branes that they are BPS states (one of
which is the ground state), and from the corresponding algebra of charges we
show that the energy is bounded from below. In higher dimensions, our results
admit a straightforward generalization, although there are presumably more
solutions corresponding to different intersections of the elementary objects.Comment: 43 pages, revtex4.cls; v2: slight amendments and references added to
match published versio
The Aquarius Co-Moving Group is Not a Disrupted Classical Globular Cluster
We present a detailed analysis of high-resolution, high S/N spectra for 5
Aquarius stream stars observed with the MIKE spectrograph on the Magellan Clay
telescope. Our sample represents one third of the 15 known members in the
stream. We find the stream is not mono-metallic: the metallicity ranges from
[Fe/H] = -0.63 to -1.58. No anti-correlation in Na-O abundances is present, and
we find a strong positive Mg-Al relationship, similar to that observed in the
thick disk. We find no evidence that the stream is a result of a disrupted
classical globular cluster, contrary to a previously published claim. High
[(Na, Ni, alpha)/Fe] and low [Ba/Y] abundance ratios in the stream suggests it
is not a tidal tail from a disrupted dwarf galaxy, either. The stream is
chemically indistinguishable from Milky Way field stars with the exception of
one candidate, C222531-145437. From its position, velocity, and detailed
chemical abundances, C222531-145437 is likely a star that was tidally disrupted
from omega-Centauri. We propose the Aquarius stream is Galactic in origin, and
could be the result from a disk-satellite perturbation in the Milky Way thick
disk on the order of a few Gyr ago: derived orbits, UVW velocities, and angular
momenta of the Aquarius members offer qualitative support for our hypothesis.
Assuming C222531-145437 is a tidally disrupted member of omega-Centauri, this
system is the most likely disk perturber. In the absence of compelling chemical
and/or dynamical evidence that the Aquarius stream is the tidal tail of a
disrupted satellite, we advocate the "Aquarius group" as a more appropriate
description. Like the Canis Major over-density, as well as the Hercules and
Monoceros groups, the Aquarius group joins the list of kinematically-identified
substructures that are not actually accreted material: they are simply part of
the rich complexity of the Milky Way structure.Comment: Accepted to MNRAS. Updated to journal versio
Recommended from our members
Brain Activation During Working Memory Is Altered in Patients With Type 1 Diabetes During Hypoglycemia
OBJECTIVE To investigate the effects of acute hypoglycemia on working memory and brain function in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS Using blood oxygen level–dependent (BOLD) functional magnetic resonance imaging during euglycemic (5.0 mmol/L) and hypoglycemic (2.8 mmol/L) hyperinsulinemic clamps, we compared brain activation response to a working-memory task (WMT) in type 1 diabetic subjects (n = 16) with that in age-matched nondiabetic control subjects (n = 16). Behavioral performance was assessed by percent correct responses. RESULTS During euglycemia, the WMT activated the bilateral frontal and parietal cortices, insula, thalamus, and cerebellum in both groups. During hypoglycemia, activation decreased in both groups but remained 80% larger in type 1 diabetic versus control subjects (P < 0.05). In type 1 diabetic subjects, higher HbA1c was associated with lower activation in the right parahippocampal gyrus and amygdala (R2 = 0.45, P < 0.002). Deactivation of the default-mode network (DMN) also was seen in both groups during euglycemia. However, during hypoglycemia, type 1 diabetic patients deactivated the DMN 70% less than control subjects (P < 0.05). Behavioral performance did not differ between glycemic conditions or groups. CONCLUSIONS BOLD activation was increased and deactivation was decreased in type 1 diabetic versus control subjects during hypoglycemia. This higher level of brain activation required by type 1 diabetic subjects to attain the same level of cognitive performance as control subjects suggests reduced cerebral efficiency in type 1 diabetes
The Application of Time-Lapse Photography in Work Simplification Studies of Construction Operations
Network-Level Structural Abnormalities of Cerebral Cortex in Type 1 Diabetes Mellitus
Type 1 diabetes mellitus (T1DM) usually begins in childhood and adolescence and causes lifelong damage to several major organs including the brain. Despite increasing evidence of T1DM-induced structural deficits in cortical regions implicated in higher cognitive and emotional functions, little is known whether and how the structural connectivity between these regions is altered in the T1DM brain. Using inter-regional covariance of cortical thickness measurements from high-resolution T1-weighted magnetic resonance data, we examined the topological organizations of cortical structural networks in 81 T1DM patients and 38 healthy subjects. We found a relative absence of hierarchically high-level hubs in the prefrontal lobe of T1DM patients, which suggests ineffective top-down control of the prefrontal cortex in T1DM. Furthermore, inter-network connections between the strategic/executive control system and systems subserving other cortical functions including language and mnemonic/emotional processing were also less integrated in T1DM patients than in healthy individuals. The current results provide structural evidence for T1DM-related dysfunctional cortical organization, which specifically underlie the top-down cognitive control of language, memory, and emotion. © 2013 Lyoo et al
Recommended from our members
On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds.
Backbone N-methylation is common among peptide natural products and has a substantial impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was dependent on backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1,024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (molecular mass = 755 Da) with three N-methyl groups, showed an oral bioavailability of 28% in rat
Recommended from our members
Resting-State Brain Functional Connectivity Is Altered in Type 2 Diabetes
Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer disease (AD). Populations at risk for AD show altered brain activity in the default mode network (DMN) before cognitive dysfunction. We evaluated this brain pattern in T2DM patients. We compared T2DM patients (n = 10, age = 56 ± 2.2 years, fasting plasma glucose [FPG] = 8.4 ± 1.3 mmol/L, HbA1c = 7.5 ± 0.54%) with nondiabetic age-matched control subjects (n = 11, age = 54 ± 1.8 years, FPG = 4.8 ± 0.2 mmol/L) using resting-state functional magnetic resonance imaging to evaluate functional connectivity strength among DMN regions. We also evaluated hippocampal volume, cognition, and insulin sensitivity by homeostasis model assessment of insulin resistance (HOMA-IR). Control subjects showed stronger correlations versus T2DM patients in the DMN between the seed (posterior cingulate) and bilateral middle temporal gyrus (β = 0.67 vs. 0.43), the right inferior and left medial frontal gyri (β = 0.75 vs. 0.54), and the left thalamus (β = 0.59 vs. 0.37), respectively, with no group differences in cognition or hippocampal size. In T2DM patients, HOMA-IR was inversely correlated with functional connectivity in the right inferior frontal gyrus and precuneus. T2DM patients showed reduced functional connectivity in the DMN compared with control subjects, which was associated with insulin resistance in selected brain regions, but there were no group effects of brain structure or cognition
Financing Direct Democracy: Revisiting the Research on Campaign Spending and Citizen Initiatives
The conventional view in the direct democracy literature is that spending against a measure is more effective than spending in favor of a measure, but the empirical results underlying this conclusion have been questioned by recent research. We argue that the conventional finding is driven by the endogenous nature of campaign spending: initiative proponents spend more when their ballot measure is likely to fail. We address this endogeneity by using an instrumental variables approach to analyze a comprehensive dataset of ballot propositions in California from 1976 to 2004. We find that both support and opposition spending on citizen initiatives have strong, statistically significant, and countervailing effects. We confirm this finding by looking at time series data from early polling on a subset of these measures. Both analyses show that spending in favor of citizen initiatives substantially increases their chances of passage, just as opposition spending decreases this likelihood
- …
