1,136 research outputs found
A Policy Switching Approach to Consolidating Load Shedding and Islanding Protection Schemes
In recent years there have been many improvements in the reliability of
critical infrastructure systems. Despite these improvements, the power systems
industry has seen relatively small advances in this regard. For instance, power
quality deficiencies, a high number of localized contingencies, and large
cascading outages are still too widespread. Though progress has been made in
improving generation, transmission, and distribution infrastructure, remedial
action schemes (RAS) remain non-standardized and are often not uniformly
implemented across different utilities, ISOs, and RTOs. Traditionally, load
shedding and islanding have been successful protection measures in restraining
propagation of contingencies and large cascading outages. This paper proposes a
novel, algorithmic approach to selecting RAS policies to optimize the operation
of the power network during and after a contingency. Specifically, we use
policy-switching to consolidate traditional load shedding and islanding
schemes. In order to model and simulate the functionality of the proposed power
systems protection algorithm, we conduct Monte-Carlo, time-domain simulations
using Siemens PSS/E. The algorithm is tested via experiments on the IEEE-39
topology to demonstrate that the proposed approach achieves optimal power
system performance during emergency situations, given a specific set of RAS
policies.Comment: Full Paper Accepted to PSCC 2014 - IEEE Co-Sponsored Conference. 7
Pages, 2 Figures, 2 Table
What changed your mind : the roles of dynamic topics and discourse in argumentation process
In our world with full of uncertainty, debates and argumentation contribute to the progress of science and society. Despite of the in- creasing attention to characterize human arguments, most progress made so far focus on the debate outcome, largely ignoring the dynamic patterns in argumentation processes. This paper presents a study that automatically analyzes the key factors in argument persuasiveness, beyond simply predicting who will persuade whom. Specifically, we propose a novel neural model that is able to dynamically track the changes of latent topics and discourse in argumentative conversations, allowing the investigation of their roles in influencing the outcomes of persuasion. Extensive experiments have been conducted on argumentative conversations on both social media and supreme court. The results show that our model outperforms state-of-the-art models in identifying persuasive arguments via explicitly exploring dynamic factors of topic and discourse. We further analyze the effects of topics and discourse on persuasiveness, and find that they are both useful -- topics provide concrete evidence while superior discourse styles may bias participants, especially in social media arguments. In addition, we draw some findings from our empirical results, which will help people better engage in future persuasive conversations
A kinematic study of the Andromeda dwarf spheroidal system
We present a homogeneous kinematic analysis of red giant branch stars within
18 of the 28 Andromeda dwarf spheroidal (dSph) galaxies, obtained using the
Keck I LRIS and Keck II DEIMOS spectrographs. Based on their g-i colors (taken
with the CFHT MegaCam imager), physical positions on the sky, and radial
velocities, we assign probabilities of dSph membership to each observed star.
Using this information, the velocity dispersions, central masses and central
densities of the dark matter halos are calculated for these objects, and
compared with the properties of the Milky Way dSph population. We also measure
the average metallicity ([Fe/H]) from the co-added spectra of member stars for
each M31 dSph and find that they are consistent with the trend of decreasing
[Fe/H] with luminosity observed in the Milky Way population. We find that three
of our studied M31 dSphs appear as significant outliers in terms of their
central velocity dispersion, And XIX, XXI and XXV, all of which have large
half-light radii (>700 pc) and low velocity dispersions (sigma_v<5 km/s). In
addition, And XXV has a mass-to-light ratio within its half-light radius of
just [M/L]_{half}=10.3^{+7.0}_{-6.7}, making it consistent with a simple
stellar system with no appreciable dark matter component within its 1 sigma
uncertainties. We suggest that the structure of the dark matter halos of these
outliers have been significantly altered by tides.Comment: 41 pages, 23 figures. Accepted for publication in Ap
The large-scale structure of the halo of the Andromeda Galaxy Part I: global stellar density, morphology and metallicity properties
We present an analysis of the large-scale structure of the halo of the
Andromeda galaxy, based on the Pan-Andromeda Archeological Survey (PAndAS),
currently the most complete map of resolved stellar populations in any galactic
halo. Despite copious substructure, the global halo populations follow closely
power law profiles that become steeper with increasing metallicity. We divide
the sample into stream-like populations and a smooth halo component. Fitting a
three-dimensional halo model reveals that the most metal-poor populations
([Fe/H]<-1.7) are distributed approximately spherically (slightly prolate with
ellipticity c/a=1.09+/-0.03), with only a relatively small fraction (42%)
residing in discernible stream-like structures. The sphericity of the ancient
smooth component strongly hints that the dark matter halo is also approximately
spherical. More metal-rich populations contain higher fractions of stars in
streams (86% for [Fe/H]>-0.6). The space density of the smooth metal-poor
component has a global power-law slope of -3.08+/-0.07, and a non-parametric
fit shows that the slope remains nearly constant from 30kpc to 300kpc. The
total stellar mass in the halo at distances beyond 2 degrees is 1.1x10^10 Solar
masses, while that of the smooth component is 3x10^9 Solar masses.
Extrapolating into the inner galaxy, the total stellar mass of the smooth halo
is plausibly 8x10^9 Solar masses. We detect a substantial metallicity gradient,
which declines from [Fe/H]=-0.7 at R=30kpc to [Fe/H]=-1.5 at R=150kpc for the
full sample, with the smooth halo being 0.2dex more metal poor than the full
sample at each radius. While qualitatively in-line with expectations from
cosmological simulations, these observations are of great importance as they
provide a prototype template that such simulations must now be able to
reproduce in quantitative detail.Comment: 21 pages, 17 figures, accepted for publication in the Astrophysical
Journa
The complexity of two finite-state models, optimizing transducers and counting automata
An optimizing finite-state transducer is a nondeterministic finite-state transducer in which states are either maximizing or minimizing. In a given state, the optimal output is the maximum or minimum--over all possible transitions--of the transition output concatenated with the optimal output of the resulting state. The ranges of optimizing finite-state transducers form a class in NL which includes a hierarchy based on the number of alternations of maximizing and minimizing states in a computation. The inequivalence problem--whether or not two transducers compute different functions, and the range inequivalence problem are shown to be undecidable. Some other problems associated with this model are shown to be complete for NL and NP;A counting finite-state automaton is a nondeterministic finite-state automaton which, on an input over its input alphabet, (magically) writes in binary the number of accepting computations on the input. We examine the complexity of computing the counting function of an NFA, and the complexity of recognizing its range as a set of binary strings. We also consider the pumping behavior of counting finite-state automata. The class of functions computed by counting NFAs (1) includes a class of functions computed by deterministic finite-state transducers; (2) is contained in the class of functions computed by polynomially time- and linearly space-bounded Turing transducers; (3) includes a function whose range is the composite numbers
PAndAS in the mist: The stellar and gaseous mass within the halos of M31 and M33
Large scale surveys of the prominent members of the Local Group have provided
compelling evidence for the hierarchical formation of massive galaxies,
revealing a wealth of substructure that is thought to be the debris from
ancient and on-going accretion events. In this paper, we compare two extant
surveys of the M31-M33 subgroup of galaxies; the Pan-Andromeda Archaeological
Survey (PAndAS) of the stellar structure, and a combination of observations of
the HI gaseous content, detected at 21cm. Our key finding is a marked lack of
spatial correlation between these two components on all scales, with only a few
potential overlaps between stars and gas.The paucity of spatial correlation
significantly restricts the analysis of kinematic correlations, although there
does appear to the HI kinematically associated with the Giant Stellar Stream
where it passes the disk of M31. These results demonstrate that that different
processes must significantly influence the dynamical evolution of the stellar
and HI components of substructures, such as ram pressure driving gas away from
a purely gravitational path. Detailed modelling of the offset between the
stellar and gaseous substructure will provide a determination of the properties
of the gaseous halo of M31 and M33.Comment: 11 pages, 6 figures. Accepted for publication in the Astrophysical
Journal. Figure quality reduced. High quality version available at
http://www.physics.usyd.edu.au/~gfl/Arxiv_Papers/PAndAS_Mist
The PAndAS Field of Streams: stellar structures in the Milky Way halo toward Andromeda and Triangulum
We reveal the highly structured nature of the Milky Way stellar halo within
the footprint of the PAndAS photometric survey from blue main sequence and main
sequence turn-off stars. We map no fewer than five stellar structures within a
heliocentric range of ~5 to 30 kpc. Some of these are known (the Monoceros
Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three
well-defined stellar structures that could be, at least partly, responsible for
the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In
particular, we trace a new faint stellar stream located at a heliocentric
distance of ~17 kpc. With a surface brightness of \Sigma_V ~ 32-32.5
mag/arcsec^2, it follows an orbit that is almost parallel to the Galactic plane
north of M31 and has so far eluded surveys of the Milky Way halo as these tend
to steer away from regions dominated by the Galactic disk. Investigating our
follow-up spectroscopic observations of PAndAS, we serendipitously uncover a
radial velocity signature from stars that have colors and magnitudes compatible
with the stream. From the velocity of eight likely member stars, we show that
this stellar structure is dynamically cold, with an unresolved velocity
dispersion that is lower than 7.1 km/s at the 90-percent confidence level.
Along with the width of the stream (300-650 pc), its dynamics points to a
dwarf-galaxy-accretion origin. The numerous stellar structures we can map in
the Milky Way stellar halo between 5 and 30 kpc and their varying morphology is
a testament to the complex nature of the stellar halo at these intermediate
distances.Comment: 11 pages, 8 figures, accepted for publication in the ApJ, Figure 3 is
the money plo
The On-Orbit Performance of the Galaxy Evolution Explorer
We report the first year on-orbit performance results for the Galaxy
Evolution Explorer (GALEX), a NASA Small Explorer that is performing a survey
of the sky in two ultraviolet bands. The instrument comprises a 50 cm diameter
modified Ritchey-Chretien telescope with a 1.25 degree field of view,
selectable imaging and objective grism spectroscopic modes, and an innovative
optical system with a thin-film multilayer dichroic beam splitter that enables
simultaneous imaging by a pair of photon counting, microchannel plate, delay
line readout detectors. Initial measurements demonstrate that GALEX is
performing well, meeting its requirements for resolution, efficiency,
astrometry, bandpass definition and survey sensitivity.Comment: This paper will be published as part of the Galaxy Evolution Explorer
(GALEX) Astrophysical Journal Letters Special Issu
A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy
Dwarf satellite galaxies are thought to be the remnants of the population of
primordial structures that coalesced to form giant galaxies like the Milky Way.
An early analysis noted that dwarf galaxies may not be isotropically
distributed around our Galaxy, as several are correlated with streams of HI
emission, and possibly form co-planar groups. These suspicions are supported by
recent analyses, and it has been claimed that the apparently planar
distribution of satellites is not predicted within standard cosmology, and
cannot simply represent a memory of past coherent accretion. However, other
studies dispute this conclusion. Here we report the existence (99.998%
significance) of a planar sub-group of satellites in the Andromeda galaxy,
comprising approximately 50% of the population. The structure is vast: at least
400 kpc in diameter, but also extremely thin, with a perpendicular scatter
<14.1 kpc (99% confidence). Radial velocity measurements reveal that the
satellites in this structure have the same sense of rotation about their host.
This finding shows conclusively that substantial numbers of dwarf satellite
galaxies share the same dynamical orbital properties and direction of angular
momentum, a new insight for our understanding of the origin of these most dark
matter dominated of galaxies. Intriguingly, the plane we identify is
approximately aligned with the pole of the Milky Way's disk and is co-planar
with the Milky Way to Andromeda position vector. The existence of such
extensive coherent kinematic structures within the halos of massive galaxies is
a fact that must be explained within the framework of galaxy formation and
cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1
three-dimensional interactive figure. To view and manipulate the 3-D figure,
an Adobe Reader browser plug-in is required; alternatively save to disk and
view with Adobe Reade
- …
