1,037 research outputs found

    Challenges of Internet of Things and Big Data Integration

    Full text link
    The Internet of Things anticipates the conjunction of physical gadgets to the In-ternet and their access to wireless sensor data which makes it expedient to restrain the physical world. Big Data convergence has put multifarious new opportunities ahead of business ventures to get into a new market or enhance their operations in the current market. considering the existing techniques and technologies, it is probably safe to say that the best solution is to use big data tools to provide an analytical solution to the Internet of Things. Based on the current technology deployment and adoption trends, it is envisioned that the Internet of Things is the technology of the future, while to-day's real-world devices can provide real and valuable analytics, and people in the real world use many IoT devices. Despite all the advertisements that companies offer in connection with the Internet of Things, you as a liable consumer, have the right to be suspicious about IoT advertise-ments. The primary question is: What is the promise of the Internet of things con-cerning reality and what are the prospects for the future.Comment: Proceedings of the International Conference on International Conference on Emerging Technologies in Computing 2018 (iCETiC '18), 23rd -24th August, 2018, at London Metropolitan University, London, UK, Published by Springer-Verla

    Cloud Service ranking using Checkpoint based Load balancing in real time scheduling of Cloud Computing

    Full text link
    Cloud computing has been gaining popularity in the recent years. Several studies are being proceeded to build cloud applications with exquisite quality based on users demands. In achieving the same, one of the applied criteria is checkpoint based load balancing in real time scheduling through which suitable cloud service is chosen from a group of cloud services candidates. Valuable information can be collected to rank the services within this checkpoint based load balancing. In order to attain ranking, different services are needed to be invoked in the cloud, which is time consuming and wastage of services invocation. To avoid the same, this chapter proposes an algorithm for predicting the ranks of different cloud services by using the values from previously offered services

    Fault Localization Models in Debugging

    Full text link
    Debugging is considered as a rigorous but important feature of software engineering process. Since more than a decade, the software engineering research community is exploring different techniques for removal of faults from programs but it is quite difficult to overcome all the faults of software programs. Thus, it is still remains as a real challenge for software debugging and maintenance community. In this paper, we briefly introduced software anomalies and faults classification and then explained different fault localization models using theory of diagnosis. Furthermore, we compared and contrasted between value based and dependencies based models in accordance with different real misbehaviours and presented some insight information for the debugging process. Moreover, we discussed the results of both models and manifested the shortcomings as well as advantages of these models in terms of debugging and maintenance.Comment: 58-6

    Evaluation of IoT-Based Computational Intelligence Tools for DNA Sequence Analysis in Bioinformatics

    Full text link
    In contemporary age, Computational Intelligence (CI) performs an essential role in the interpretation of big biological data considering that it could provide all of the molecular biology and DNA sequencing computations. For this purpose, many researchers have attempted to implement different tools in this field and have competed aggressively. Hence, determining the best of them among the enormous number of available tools is not an easy task, selecting the one which accomplishes big data in the concise time and with no error can significantly improve the scientist's contribution in the bioinformatics field. This study uses different analysis and methods such as Fuzzy, Dempster-Shafer, Murphy and Entropy Shannon to provide the most significant and reliable evaluation of IoT-based computational intelligence tools for DNA sequence analysis. The outcomes of this study can be advantageous to the bioinformatics community, researchers and experts in big biological data
    corecore