1,749 research outputs found

    From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour

    Full text link
    Nanocrystalline metals contain a large fraction of high-energy grain boundaries, which may be considered as glassy phases. Consequently, with decreasing grain size, a crossover in the deformation behaviour of nanocrystals to that of metallic glasses has been proposed. Here, we study this crossover using molecular dynamics simulations on bulk glasses, glass-crystal nanocomposites, and nanocrystals of Cu64Zr36 with varying crystalline volume fractions induced by long-time thermal annealing. We find that the grain boundary phase behaves like a metallic glass under constraint from the abutting crystallites. The transition from glass-like to grain-boundary-mediated plasticity can be classified into three regimes: (1) For low crystalline volume fractions, the system resembles a glass-crystal composite and plastic flow is localised in the amorphous phase; (2) with increasing crystalline volume fraction, clusters of crystallites become jammed and the mechanical response depends critically on the relaxation state of the glassy grain boundaries; (3) at grain sizes \geq 10 nm, the system is jammed completely, prohibiting pure grain-boundary plasticity and instead leading to co-deformation. We observe an inverse Hall-Petch effect only in the second regime when the grain boundary is not deeply relaxed. Experimental results with different grain boundary states are therefore not directly comparable in this regime.Comment: 19 pages, 17 figure

    Thermodynamics of mono and di-vacancies in barium titanate

    Full text link
    The thermodynamic and kinetic properties of mono and di-vacancy defects in cubic (para-electric) barium titanate are studied by means of density-functional theory calculations. It is determined which vacancy types prevail for given thermodynamic boundary conditions. The calculations confirm the established picture that vacancies occur in their nominal charge states almost over the entire band gap. For the dominating range of the band gap the di-vacancy binding energies are constant and negative. The system, therefore, strives to achieve a state in which under metal-rich (oxygen-rich) conditions all metal (oxygen) vacancies are bound in di-vacancy clusters. The migration barriers are calculated for mono-vacancies in different charge states. Since oxygen vacancies are found to readily migrate at typical growth temperatures, di-vacancies can be formed at ease. The key results of the present study with respect to the thermodynamic behavior of mono and di-vacancies influence the initial defect distribution in the ferroelectric phases and therefore the conditions for aging.Comment: 9 pages, 4 figures, 4 table

    Solid-state amorphization of Cu nanolayers embedded in a Cu64Zr36 glass

    Full text link
    Solid-state amorphization of crystalline copper nanolayers embedded in a Cu64Zr36 metallic glass is studied by molecular dynamics simulations for different orientations of the crystalline layer. We show that solid-state amorphization is driven by a reduction of interface energy, which compensates the bulk excess energy of the amorphous nanolayer with respect to the crystalline phase up to a critical layer thickness. A simple thermodynamic model is derived, which describes the simulation results in terms of orientation-dependent interface energies. Detailed analysis reveals the structure of the amorphous nanolayer and allows a comparison to a quenched copper melt, providing further insights into the origin of excess and interface energy.Comment: 16 pages, 18 figure

    Influence of Crystalline Nanoprecipitates on Shear-Band Propagation in Cu-Zr Based Metallic Glasses

    Full text link
    The interaction of shear bands with crystalline nanoprecipitates in Cu-Zr-based metallic glasses is investigated by a combination of high-resolution TEM imaging and molecular-dynamics computer simulations. Our results reveal different interaction mechanisms: Shear bands can dissolve precipitates, can wrap around crystalline obstacles, or can be blocked depending on size and density of the precipitates. If the crystalline phase has a low yield strength, we also observe slip transfer through the precipitate. Based on the computational results and experimental findings, a qualitative mechanism map is proposed that categorizes the various processes as a function of the critical stress for dislocation nucleation, precipitate size, and distance.Comment: 16 pages, 15 figure

    Formation and switching of defect dipoles in acceptor doped lead titanate: A kinetic model based on first-principles calculations

    Full text link
    The formation and field-induced switching of defect dipoles in acceptor doped lead titanate is described by a kinetic model representing an extension of the well established Arlt-Neumann model [Ferroelectrics {\bf 76}, 303 (1987)]. Energy barriers for defect association and reorientation of oxygen vacancy-dopant (Cu and Fe) complexes are obtained from first-principles calculations and serve as input data for the kinetic coefficients in the rate equation model. The numerical solution of the model describes the time evolution of the oxygen vacancy distribution at different temperatures and dopant concentrations in the presence or absence of an alternating external field. We predict the characteristic time scale for the alignment of all defect dipoles with the spontanenous polarization of the surrounding matrix. In this state the defect dipoles act as obstacles for domain wall motion and contribute to the experimentally observed aging. Under cycling conditions the fully aligned configuration is perturbed and a dynamic equilibrium is established with defect dipoles in parallel and anti-parallel orientation relative to the spontaneous polarization. This process can be related to the deaging behavior of piezoelectric ceramics.Comment: 10 pages, 7 figure

    Interface-controlled creep in metallic glass composites

    Full text link
    In this work we present molecular dynamics simulations on the creep behavior of Cu64Zr36\rm Cu_{64}Zr_{36} metallic glass composites. Surprisingly, all composites exhibit much higher creep rates than the homogeneous glass. The glass-crystal interface can be viewed as a weak interphase, where the activation barrier of shear transformation zones is lower than in the surrounding glass. We observe that the creep behavior of the composites does not only depend on the interface area but also on the orientation of the interface with respect to the loading axis. We propose an explanation in terms of different mean Schmid factors of the interfaces, with the amorphous interface regions acting as preferential slip sites.Comment: 11 pages, 13 figure

    Low temperature heat capacity of severely deformed metallic glass

    Full text link
    The low temperature heat capacity of amorphous materials reveals a low-frequency enhancement (boson peak) of the vibrational density of states, as compared with the Debye law. By measuring the low-temperature heat capacity of a Zr-based bulk metallic glass relative to a crystalline reference state, we show that the heat capacity of the glass is strongly enhanced after severe plastic deformation by high-pressure torsion, while subsequent thermal annealing at elevated temperatures leads to a significant reduction. The detailed analysis of corresponding molecular dynamics simulations of an amorphous Zr-Cu glass shows that the change in heat capacity is primarily due to enhanced low-frequency modes within the shear band region.Comment: 5 pages, 2 figure

    Determination of optimal reversed field with maximal electrocaloric cooling by a direct entropy analysis

    Full text link
    Application of a negative field on a positively poled ferroelectric sample can enhance the electrocaloric cooling and appears as a promising method to optimize the electrocaloric cycle. Experimental measurements show that the maximal cooling does not appear at the zero-polarization point, but around the shoulder of the P-E loop. This phenomenon cannot be explained by the theory based on the constant total entropy assumption under adiabatic condition. In fact, adiabatic condition does not imply constant total entropy when irreversibility is involved. A direct entropy analysis approach based on work loss is proposed in this work, which takes the entropy contribution of the irreversible process into account. The optimal reversed field determined by this approach agrees with the experimental observations. This study signifies the importance of considering the irreversible process in the electrocaloric cycles

    Influence of elastic strain on the thermodynamics and kinetics of lithium vacancy in bulk LiCoO2

    Full text link
    The influence of elastic strain on the lithium vacancy formation and migration in bulk LiCoO2 is evaluated by means of first-principles calculations within density functional theory (DFT). Strain dependent energies are determined directly from defective cells and also within linear elasticity theory from the elastic dipole tensor (Gij) for ground state and saddle point configurations. We analyze finite size-effects in the calculation of Gij, compare the predictions of the linear elastic model with those obtained from direct calculations of defective cells under strain and discuss the differences. Based on our data, we calculate the variations in vacancy concentration and mobility due to the presence of external strain in bulk LiCoO2 cathodes. Our results reveal that elastic in-plane and out-of-plane strains can significantly change the ionic conductivity of bulk LiCoO2 by an order of magnitude and thus strongly affect the performance of Li-secondary batteries

    Anomalous compliance and early yielding of nanoporous gold

    Full text link
    We present a study of the elastic and plastic behavior of nanoporous gold in compression, focusing on molecular dynamics simulation and inspecting experimental data for verification. Both approaches agree on an anomalously high elastic compliance in the early stages of deformation, along with a quasi immediate onset of plastic yielding even at the smallest load. Already before the first loading, the material undergoes spontaneous plastic deformation under the action of the capillary forces, requiring no external load. Plastic deformation under compressive load is accompanied by dislocation storage and dislocation interaction, along with strong strain hardening. Dislocation-starvation scenarios are not supported by our results. The stiffness increases during deformation, but never approaches the prediction by the relevant Gibson-Ashby scaling law. Microstructural disorder affects the plastic deformation behavior and surface excess elasticity might modify elastic response, yet we relate the anomalous compliance and the immediate yield onset to an atomistic origin: the large surface-induced prestress induces elastic shear that brings some regions in the material close to the shear instability of the generalized stacking fault energy curve. These regions are elastically highly compliant and plastically weak
    corecore