65 research outputs found
Periodic Variation of Stress in Sputter Deposited Si/WSi2 Multilayers
A tension increment after sputter deposition of 1 nm of WSi2 onto sputtered
Si was observed at low Ar gas pressures. Wafer curvature data on multilayers
were found to have a periodic variation corresponding to the multilayer period,
and this permitted statistical analyses to improve the sensitivity to small
stresses. The observation of tension instead of compression in the initial
stage of growth is new and a model invoking surface rearrangement is invoked.
The data also bear on an unusual surface smoothing phenomena for sputtered Si
surfaces caused by the sputter deposition of WSi2 . We furthermore report that
for low Ar pressures the Si layers are the predominant source of built-up
stress
Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: Effect on WSi2 film roughness and stress
We report on the transition between two regimes from several-atom clusters to
much larger nanoparticles in Ar magnetron sputter deposition of WSi2, and the
effect of nanoparticles on the properties of amorphous thin films and
multilayers. Sputter deposition of thin films is monitored by in situ x-ray
scattering, including x-ray reflectivity and grazing incidence small angle
x-ray scattering. The results show an abrupt transition at an Ar background
pressure Pc; the transition is associated with the threshold for energetic
particle thermalization, which is known to scale as the product of the Ar
pressure and the working distance between the magnetron source and the
substrate surface. Below Pc smooth films are produced, while above Pc roughness
increases abruptly, consistent with a model in which particles aggregate in the
deposition flux before reaching the growth surface. The results from WSi2 films
are correlated with in situ measurement of stress in WSi2/Si multilayers, which
exhibits a corresponding transition from compressive to tensile stress at Pc.
The tensile stress is attributed to coalescence of nanoparticles and the
elimination of nano-voids.Comment: 16 pages, 10 figures; v3: published versio
Takagi-Taupin Description of X-ray Dynamical Diffraction from Diffractive Optics with Large Numerical Aperture
We present a formalism of x-ray dynamical diffraction from volume diffractive
optics with large numerical aperture and high aspect ratio, in an analogy to
the Takagi-Taupin equations for strained single crystals. We derive a set of
basic equations for dynamical diffraction from volume diffractive optics, which
enable us to study the focusing property of these optics with various grating
profiles. We study volume diffractive optics that satisfy the Bragg condition
to various degrees, namely flat, tilted and wedged geometries, and derive the
curved geometries required for ultimate focusing. We show that the curved
geometries satisfy the Bragg condition everywhere and phase requirement for
point focusing, and effectively focus hard x-rays to a scale close to the
wavelength.Comment: 18 pages, 12 figure
Results of x-ray mirror round-robin metrology measurements at the APS, ESRF, and SPring-8 optical metrology laboratories
This paper presents the first series of round-robin metrology measurements of x-ray mirrors organized at the Advanced Photon Source (APS) in the USA, the European Synchrotron Radiation Facility in France, and the Super Photon Ring (SPring-8) (in a collaboration with Osaka University,) in Japan. This work is part of the three institutions' three-way agreement to promote a direct exchange of research information and experience amongst their specialists. The purpose of the metrology round robin is to compare the performance and limitations of the instrumentation used at the optical metrology laboratories of these facilities and to set the basis for establishing guidelines and procedures to accurately perform the measurements. The optics used in the measurements were selected to reflect typical, as well as state of the art, in mirror fabrication. The first series of the round robin measurements focuses on flat and cylindrical mirrors with varying sizes and quality. Three mirrors (two flats and one cylinder) were successively measured using long trace profilers. Although the three facilities' LTPs are of different design, the measurements were found to be in excellent agreement. The maximum discrepancy of the rms slope error values is 0.1 μrad, that of the rms shape error was 3 nm, and they all relate to the measurement of the cylindrical mirror. The next round-robin measurements will deal with elliptical and spherical optics.Lahsen Assoufid, Amparo Rommeveaux, Haruhiko Ohashi, Kazuto Yamauchi, Hidekazu Mimura, Jun Qian, Olivier Hignette, Tetsuya Ishikawa, Christian Morawe, Albert Macrander, Ali Khounsary, and Shunji Goto "Results of x-ray mirror round-robin metrology measurements at the APS, ESRF, and SPring-8 optical metrology laboratories", Proc. SPIE 5921, Advances in Metrology for X-Ray and EUV Optics, 59210J (16 September 2005); https://doi.org/10.1117/12.623209.Optics and Photonics 2005, 2005, San Diego, California, United State
Takagi–Taupin dynamical X-ray diffraction simulations of asymmetric X-ray diffraction from crystals: the effects of surface undulations
Dynamical X-ray diffraction simulations from crystals with surface undulations are reported. The Takagi–Taupin equations are applied and used to derive results in good agreement with experimental data reported in a separate paper [Macrander, Pereira, Huang, Kasman, Qian, Wojcik & Assoufid (2020). J. Appl. Cryst.
53, 789–792]. The development of Uragami [J. Phys. Soc. Jpn, (1969), 27, 147–154] is followed. Although previous work by Olekhnovich & Olekhnovich [Acta. Cryst. (1980), A36, 22–27] treated a crystal in the shape of a round cylinder, there do not seem to be any reports of previous dynamical X-ray diffraction treatments specifically for surface undulations. The significance of the present work is that it bridges the diffraction treatment of more classical dynamical diffraction theory, which assumes a flat surface, and the simple kinematic diffraction theory. The kinematic theory has, to date, been the primary means of simulating X-ray diffraction from surfaces.</jats:p
Editorial: Reflections on my tenure as Editor-in-Chief of <i>Review of Scientific Instruments</i>
- …
