18,116 research outputs found
Security Games with Information Leakage: Modeling and Computation
Most models of Stackelberg security games assume that the attacker only knows
the defender's mixed strategy, but is not able to observe (even partially) the
instantiated pure strategy. Such partial observation of the deployed pure
strategy -- an issue we refer to as information leakage -- is a significant
concern in practical applications. While previous research on patrolling games
has considered the attacker's real-time surveillance, our settings, therefore
models and techniques, are fundamentally different. More specifically, after
describing the information leakage model, we start with an LP formulation to
compute the defender's optimal strategy in the presence of leakage. Perhaps
surprisingly, we show that a key subproblem to solve this LP (more precisely,
the defender oracle) is NP-hard even for the simplest of security game models.
We then approach the problem from three possible directions: efficient
algorithms for restricted cases, approximation algorithms, and heuristic
algorithms for sampling that improves upon the status quo. Our experiments
confirm the necessity of handling information leakage and the advantage of our
algorithms
An efficient and positivity-preserving layer method for modeling radiation belt diffusion processes
An efficient and positivity-preserving layer method is introduced to solve the radiation belt diffusion equation and is applied to study the bounce resonance interaction between relativistic electrons and magnetosonic waves. The layer method with linear interpolation, denoted by LM-L (layer method-linear), requires the use of a large number of grid points to ensure accurate solutions. We introduce a monotonicity- and positivity-preserving cubic interpolation method to be used with the Milstein-Tretyakov layer method. The resulting method, called LM-MC (layer method-monotone cubic), can be used to solve the radiation belt diffusion equation with a much smaller number of grid points than LM-L while still being able to preserve the positivity of the solution. We suggest that LM-MC can be used to study long-term dynamics of radiation belts. We then develop a 2-D LM-MC code and use it to investigate the bounce resonance diffusion of radiation belt electrons by magnetosonic waves. Using a previously published magnetosonic wave model, we demonstrate that bounce resonance with magnetosonic waves is as important as gyroresonance; both can cause several orders of magnitude increase of MeV electron fluxes within 1ᅠday. We conclude that bounce resonance with magnetosonic waves should be taken into consideration together with gyroresonance
Evolution of community structure in the world trade web
In this note we study the bilateral merchandise trade flows between 186
countries over the 1948-2005 period using data from the International Monetary
Fund. We use Pajek to identify network structure and behavior across thresholds
and over time. In particular, we focus on the evolution of trade "islands" in
the a world trade network in which countries are linked with directed edges
weighted according to fraction of total dollars sent from one country to
another. We find mixed evidence for globalization.Comment: To be submitted to APFA 6 Proceedings, 8 pages, 3 Figure
Integrated Lithographic Molding for Microneedle-Based Devices
This paper presents a new fabrication method consisting of lithographically defining multiple layers of high aspect-ratio photoresist onto preprocessed silicon substrates and release of the polymer by the lost mold or sacrificial layer technique, coined by us as lithographic molding. The process methodology was demonstrated fabricating out-of-plane polymeric hollow microneedles. First, the fabrication of needle tips was demonstrated for polymeric microneedles with an outer diameter of 250 mum, through-hole capillaries of 75-mum diameter and a needle shaft length of 430 mum by lithographic processing of SU-8 onto simple v-grooves. Second, the technique was extended to gain more freedom in tip shape design, needle shaft length and use of filling materials. A novel combination of silicon dry and wet etching is introduced that allows highly accurate and repetitive lithographic molding of a complex shape. Both techniques consent to the lithographic integration of microfluidic back plates forming a patch-type device. These microneedle-integrated patches offer a feasible solution for medical applications that demand an easy to use point-of-care sample collector, for example, in blood diagnostics for lithium therapy. Although microchip capillary electrophoresis glass devices were addressed earlier, here, we show for the first time the complete diagnostic method based on microneedles made from SU-8
Walks on Apollonian networks
We carry out comparative studies of random walks on deterministic Apollonian
networks (DANs) and random Apollonian networks (RANs). We perform computer
simulations for the mean first passage time, the average return time, the
mean-square displacement, and the network coverage for unrestricted random
walk. The diffusions both on DANs and RANs are proved to be sublinear. The
search efficiency for walks with various strategies and the influence of the
topology of underlying networks on the dynamics of walks are discussed.
Contrary to one's intuition, it is shown that the self-avoiding random walk,
which has been verified as an optimal strategy for searching on scale-free and
small-world networks, is not the best strategy for the DAN in the thermodynamic
limit.Comment: 5 pages, 4 figure
Spitzer Mid-Infrared Photometry of 500 - 750 K Brown Dwarfs
Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is
critical for understanding the cold population of brown dwarfs now being found,
objects which have more in common with planets than stars. As effective
temperature (T_eff) drops from 800 K to 400 K, the fraction of flux emitted
beyond 3 microns increases rapidly, from about 40% to >75%. This rapid increase
makes a color like H-[4.5] a very sensitive temperature indicator, and it can
be combined with a gravity- and metallicity-sensitive color like H-K to
constrain all three of these fundamental properties, which in turn gives us
mass and age for these slowly cooling objects. Determination of mid-infrared
color trends also allows better exploitation of the WISE mission by the
community. We use new Spitzer Cycle 6 IRAC photometry, together with published
data, to present trends of color with type for L0 to T10 dwarfs. We also use
the atmospheric and evolutionary models of Saumon & Marley to investigate the
masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and
T_eff ~ 500 K to 750 K.Comment: To be published in the on-line version of the Proceedings of Cool
Stars 16 (ASP Conference Series). This is an updated version of Leggett et
al. 2010 ApJ 710 1627; a photometry compilation is available at
http://www.gemini.edu/staff/slegget
Modeling relaxation and jamming in granular media
We introduce a stochastic microscopic model to investigate the jamming and
reorganization of grains induced by an object moving through a granular medium.
The model reproduces the experimentally observed periodic sawtooth fluctuations
in the jamming force and predicts the period and the power spectrum in terms of
the controllable physical parameters. It also predicts that the avalanche
sizes, defined as the number of displaced grains during a single advance of the
object, follow a power-law, , where the exponent is
independent of the physical parameters
- …
