7 research outputs found
COST-BENEFIT ANALYSIS OF SHORT ROTATION WOODY CROPS PLANTATIONS FOR LOCAL SUPPLY CHAINS AND HEAT USE
Improving nutritional value of products with flour of the hulless barley cultivar ‘Kornelija’ as an ingredient
Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage
Crop production constitutes a significant portion of the EU’s agricultural output and influences land use decisions. Various elements within the crop production system can significantly impact its outcomes. This paper aims to evaluate the environmental and economic performance of crop rotation, catch crops, and different tillage practices in Latvia by analyzing data from case studies, field trials, and field monitoring to identify the potential for improvement towards a more sustainable utilization of agricultural land. Environmental performance was evaluated by focusing on nitrogen use efficiency (NUE), as it is likely to play a significant role in assessing the environmental suitability of crop production according to the Platform on Sustainable Finance. For economic performance, gross margins were calculated. Crop rotation in Latvia tends to be monotonous, with wheat and oilseed rape dominating over 60% of the cultivated area due to their profitability. The findings of this study indicate that achieving a minimum NUE of 70% is challenging. Crop rotations including oilseed rape, particularly the common wheat–oilseed rape rotation, have an average NUE below the threshold, while proper use of catch crops may increase NUE by 7–9%. The three-year field trials on commercial farms yielded divergent findings about the impact of various tillage practices on NUE and gross margin. However, the field trials conducted on the farm practicing reduced tillage for over ten years show higher NUE compared to ploughing. The advantage of reduced tillage was supported by the obtained results indicating lower costs of agrotechnical operations, including less diesel consumption
Assessing the socio-economic benefits and costs of insect meal as a fishmeal substitute in livestock and aquaculture /
Sustainability targets set by the United Nations, such as Zero Hunger by 2030, encourage the search for innovative solutions to enhance food production while preserving the environment. Alternative protein sources for feed, while conventional resources like soymeal and fishmeal become more expensive and scarcer, is one of the possibilities. Studies on substituting fishmeal with insect meal show promising results in terms of animal growth and feed efficiency. This paper aims to assess the socio-economic benefits and costs of insect meal substituting fishmeal in feed and to highlight the factors influencing performance most. The study evaluates the economic value of insect-based products, waste reduction, and reduced greenhouse gas emissions as socio-economic benefits. It combines empirical data derived from laboratory trials and two case studies covering black soldier fly (Hermetia illucens) and yellow mealworm (Tenebrio molitor). Current analyses reveal negative socio-economic balances, emphasizing that reduction of operating and investment costs through upscaling and technological advancements can give a positive move, as well as factors such as current market valuations for nutrients can change significantly. Thus, a negative balance at the moment does not mean that insect rearing, and larva processing are not desirable from a long-term socio-economic perspective
