1,030 research outputs found
Polymer translocation through a nanopore under an applied external field
We investigate the dynamics of polymer translocation through a nanopore under
an externally applied field using the 2D fluctuating bond model with
single-segment Monte Carlo moves. We concentrate on the influence of the field
strength , length of the chain , and length of the pore on forced
translocation. As our main result, we find a crossover scaling for the
translocation time with the chain length from for
relatively short polymers to for longer chains, where
is the Flory exponent. We demonstrate that this crossover is due to the
change in the dependence of the translocation velocity v on the chain length.
For relatively short chains , which crosses over to for long polymers. The reason for this is that with increasing
there is a high density of segments near the exit of the pore, which slows down
the translocation process due to slow relaxation of the chain. For the case of
a long nanopore for which , the radius of gyration along
the pore, is smaller than the pore length, we find no clear scaling of the
translocation time with the chain length. For large , however, the
asymptotic scaling is recovered. In this regime, is almost independent of . We have previously found that for a polymer,
which is initially placed in the middle of the pore, there is a minimum in the
escape time for . We show here that this minimum
persists for a weak fields such that is less than some critical value,
but vanishes for large values of .Comment: 25 Pages, 10 figures. Submitted to J. Chem. Phys. J. Chem. Phys. 124,
in press (2006
Probing molecular free energy landscapes by periodic loading
Single molecule pulling experiments provide information about interactions in
biomolecules that cannot be obtained by any other method. However, the
reconstruction of the molecule's free energy profile from the experimental data
is still a challenge, in particular for the unstable barrier regions. We
propose a new method for obtaining the full profile by introducing a periodic
ramp and using Jarzynski's identity for obtaining equilibrium quantities from
non-equilibrium data. Our simulated experiments show that this method delivers
significant more accurate data than previous methods, under the constraint of
equal experimental effort.Comment: 4 pages, 3 figure
Molecular Spiders in One Dimension
Molecular spiders are synthetic bio-molecular systems which have "legs" made
of short single-stranded segments of DNA. Spiders move on a surface covered
with single-stranded DNA segments complementary to legs. Different mappings are
established between various models of spiders and simple exclusion processes.
For spiders with simple gait and varying number of legs we compute the
diffusion coefficient; when the hopping is biased we also compute their
velocity.Comment: 14 pages, 2 figure
Mechanochemical action of the dynamin protein
Dynamin is a ubiquitous GTPase that tubulates lipid bilayers and is
implicated in many membrane severing processes in eukaryotic cells. Setting the
grounds for a better understanding of this biological function, we develop a
generalized hydrodynamics description of the conformational change of large
dynamin-membrane tubes taking into account GTP consumption as a free energy
source. On observable time scales, dissipation is dominated by an effective
dynamin/membrane friction and the deformation field of the tube has a simple
diffusive behavior, which could be tested experimentally. A more involved,
semi-microscopic model yields complete predictions for the dynamics of the tube
and possibly accounts for contradictory experimental results concerning its
change of conformation as well as for plectonemic supercoiling.Comment: 17 pages, 4 figures; typos corrected, reference adde
Genetic noise control via protein oligomerization
Gene expression in a cell entails random reaction events occurring over
disparate time scales. Thus, molecular noise that often results in phenotypic
and population-dynamic consequences sets a fundamental limit to biochemical
signaling. While there have been numerous studies correlating the architecture
of cellular reaction networks with noise tolerance, only a limited effort has
been made to understand the dynamic role of protein-protein interactions. Here
we have developed a fully stochastic model for the positive feedback control of
a single gene, as well as a pair of genes (toggle switch), integrating
quantitative results from previous in vivo and in vitro studies. We find that
the overall noise-level is reduced and the frequency content of the noise is
dramatically shifted to the physiologically irrelevant high-frequency regime in
the presence of protein dimerization. This is independent of the choice of
monomer or dimer as transcription factor and persists throughout the multiple
model topologies considered. For the toggle switch, we additionally find that
the presence of a protein dimer, either homodimer or heterodimer, may
significantly reduce its random switching rate. Hence, the dimer promotes the
robust function of bistable switches by preventing the uninduced (induced)
state from randomly being induced (uninduced). The specific binding between
regulatory proteins provides a buffer that may prevent the propagation of
fluctuations in genetic activity. The capacity of the buffer is a non-monotonic
function of association-dissociation rates. Since the protein oligomerization
per se does not require extra protein components to be expressed, it provides a
basis for the rapid control of intrinsic or extrinsic noise
Stochastic Eulerian Lagrangian Methods for Fluid-Structure Interactions with Thermal Fluctuations
We present approaches for the study of fluid-structure interactions subject
to thermal fluctuations. A mixed mechanical description is utilized combining
Eulerian and Lagrangian reference frames. We establish general conditions for
operators coupling these descriptions. Stochastic driving fields for the
formalism are derived using principles from statistical mechanics. The
stochastic differential equations of the formalism are found to exhibit
significant stiffness in some physical regimes. To cope with this issue, we
derive reduced stochastic differential equations for several physical regimes.
We also present stochastic numerical methods for each regime to approximate the
fluid-structure dynamics and to generate efficiently the required stochastic
driving fields. To validate the methodology in each regime, we perform analysis
of the invariant probability distribution of the stochastic dynamics of the
fluid-structure formalism. We compare this analysis with results from
statistical mechanics. To further demonstrate the applicability of the
methodology, we perform computational studies for spherical particles having
translational and rotational degrees of freedom. We compare these studies with
results from fluid mechanics. The presented approach provides for
fluid-structure systems a set of rather general computational methods for
treating consistently structure mechanics, hydrodynamic coupling, and thermal
fluctuations.Comment: 24 pages, 3 figure
Expression quantitative trait loci are highly sensitive to cellular differentiation state
Blood cell development from multipotent hematopoietic stem cells to specialized blood cells is accompanied by drastic changes in gene expression for which the triggers remain mostly unknown. Genetical genomics is an approach linking natural genetic variation to gene expression variation, thereby allowing the identification of genomic loci containing gene expression modulators (eQTLs). In this paper, we used a genetical genomics approach to analyze gene expression across four developmentally close blood cell types collected from a large number of genetically different but related mouse strains. We found that, while a significant number of eQTLs (365) had a consistent “static” regulatory effect on gene expression, an even larger number were found to be very sensitive to cell stage. As many as 1,283 eQTLs exhibited a “dynamic” behavior across cell types. By looking more closely at these dynamic eQTLs, we show that the sensitivity of eQTLs to cell stage is largely associated with gene expression changes in target genes. These results stress the importance of studying gene expression variation in well-defined cell populations. Only such studies will be able to reveal the important differences in gene regulation between different ce
A Connection between Obscuration and Star Formation in Luminous Quasars
We present a measurement of the star formation properties of a uniform sample of mid-IR selected, unobscured and obscured quasars (QSO1s and QSO2s) in the Bo\ otes survey region. We use an spectral energy distribution (SED) analysis for photometric data spanning optical to far-IR wavelengths to decompose AGN and host galaxy components. We find that when compared to a matched sample of QSO1s, the QSO2s have higher far-IR detection fractions, far-IR fluxes and infrared star formation luminosities (LSFIR) by a factor of ∼2. Correspondingly, we show that the AGN obscured fraction rises from 0.3 to 0.7 between 4−40×1011L⊙. We also find evidence associating the absorption in the X-ray emission with the presence of far-IR emitting dust. Overall, these results are consistent with galaxy evolution models in which quasar obscurations can be associated with a dust-enshrouded starburst galaxie
Single-molecule experiments in biological physics: methods and applications
I review single-molecule experiments (SME) in biological physics. Recent
technological developments have provided the tools to design and build
scientific instruments of high enough sensitivity and precision to manipulate
and visualize individual molecules and measure microscopic forces. Using SME it
is possible to: manipulate molecules one at a time and measure distributions
describing molecular properties; characterize the kinetics of biomolecular
reactions and; detect molecular intermediates. SME provide the additional
information about thermodynamics and kinetics of biomolecular processes. This
complements information obtained in traditional bulk assays. In SME it is also
possible to measure small energies and detect large Brownian deviations in
biomolecular reactions, thereby offering new methods and systems to scrutinize
the basic foundations of statistical mechanics. This review is written at a
very introductory level emphasizing the importance of SME to scientists
interested in knowing the common playground of ideas and the interdisciplinary
topics accessible by these techniques. The review discusses SME from an
experimental perspective, first exposing the most common experimental
methodologies and later presenting various molecular systems where such
techniques have been applied. I briefly discuss experimental techniques such as
atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers
(MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I
then present several applications of SME to the study of nucleic acids (DNA,
RNA and DNA condensation), proteins (protein-protein interactions, protein
folding and molecular motors). Finally, I discuss applications of SME to the
study of the nonequilibrium thermodynamics of small systems and the
experimental verification of fluctuation theorems. I conclude with a discussion
of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond.
Matt
Monte Carlo Simulations of HIV Capsid Protein Homodimer
Capsid protein (CA) is the building block of virus coats. To help understand how the HIV CA proteins self-organize into large assemblies of various shapes, we aim to computationally evaluate the binding affinity and interfaces in a CA homodimer. We model the N- and C-terminal domains (NTD and CTD) of the CA as rigid bodies and treat the five-residue loop between the two domains as a flexible linker. We adopt a transferrable residue-level coarse-grained energy function to describe the interactions between the protein domains. In seven extensive Monte Carlo simulations with different volumes, a large number of binding/unbinding transitions between the two CA proteins are observed, thus allowing a reliable estimation of the equilibrium probabilities for the dimeric vs monomeric forms. The obtained dissociation constant for the CA homodimer from our simulations, 20–25 μM, is in reasonable agreement with experimental measurement. A wide range of binding interfaces, primarily between the NTDs, are identified in the simulations. Although some observed bound structures here closely resemble the major binding interfaces in the capsid assembly, they are statistically insignificant in our simulation trajectories. Our results suggest that although the general purpose energy functions adopted here could reasonably reproduce the overall binding affinity for the CA homodimer, further adjustment would be needed to accurately represent the relative strength of individual binding interfaces
- …
