773 research outputs found
CO J=2-1 line emission in cluster galaxies at z~1: fueling star formation in dense environments
We present observations of CO J=2-1 line emission in infrared-luminous
cluster galaxies at z~1 using the IRAM Plateau de Bure Interferometer. Our two
primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie
within 2 Mpc of the centers of two massive (>10^14 Msun) galaxy clusters. CO
line emission is not detected in either DOG. We calculate 3-sigma upper limits
to the CO J=2-1 line luminosities, L'_CO < 6.08x10^9 and < 6.63x10^9 K km/s
pc^2. Assuming a CO-to-H_2 conversion factor derived for ultraluminous infrared
galaxies in the local Universe, this translates to limits on the cold molecular
gas mass of M_H_2 < 4.86x10^9 Msun and M_H_2 < 5.30x10^9 Msun. Both DOGs
exhibit mid-infrared continuum emission that follows a power-law, suggesting
that an AGN contributes to the dust heating. As such, estimates of the star
formation efficiencies in these DOGs are uncertain. A third cluster member with
an infrared luminosity, L_IR < 7.4x10^11 Lsun, is serendipitously detected in
CO J=2-1 line emission in the field of one of the DOGs located roughly two
virial radii away from the cluster center. The optical spectrum of this object
suggests that it is likely an obscured AGN, and the measured CO line luminosity
is L'_CO = (1.94 +/- 0.35)x10^10 K km/s pc^2, which leads to an estimated cold
molecular gas mass M_H_2 = (1.55+/-0.28)x10^10 Msun. A significant reservoir of
molecular gas in a z~1 galaxy located away from the cluster center demonstrates
that the fuel can exist to drive an increase in star-formation and AGN activity
at the outskirts of high-redshift clusters.Comment: 22 pages, 4 figures; accepted for publication in Ap
Free-energy distribution of the directed polymer at high temperature
We study the directed polymer of length in a random potential with fixed
endpoints in dimension 1+1 in the continuum and on the square lattice, by
analytical and numerical methods. The universal regime of high temperature
is described, upon scaling 'time' and space (with for the discrete model) by a continuum model with
-function disorder correlation. Using the Bethe Ansatz solution for the
attractive boson problem, we obtain all positive integer moments of the
partition function. The lowest cumulants of the free energy are predicted at
small time and found in agreement with numerics. We then obtain the exact
expression at any time for the generating function of the free energy
distribution, in terms of a Fredholm determinant. At large time we find that it
crosses over to the Tracy Widom distribution (TW) which describes the fixed
infinite limit. The exact free energy distribution is obtained for any time
and compared with very recent results on growth and exclusion models.Comment: 6 pages, 3 figures large time limit corrected and convergence to
Tracy Widom established, 1 figure changed
Enhanced reaction kinetics in biological cells
The cell cytoskeleton is a striking example of "active" medium driven
out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to
have a spectacular impact on the mechanical and rheological properties of the
cellular medium, as well as on its transport properties : a generic tracer
particle freely diffuses as in a standard equilibrium medium, but also
intermittently binds with random interaction times to motor proteins, which
perform active ballistic excursions along cytoskeletal filaments. Here, we
propose for the first time an analytical model of transport limited reactions
in active media, and show quantitatively how active transport can enhance
reactivity for large enough tracers like vesicles. We derive analytically the
average interaction time with motor proteins which optimizes the reaction rate,
and reveal remarkable universal features of the optimal configuration. We
discuss why active transport may be beneficial in various biological examples:
cell cytoskeleton, membranes and lamellipodia, and tubular structures like
axons.Comment: 10 pages, 2 figure
On the size of knots in ring polymers
We give two different, statistically consistent definitions of the length l
of a prime knot tied into a polymer ring. In the good solvent regime the
polymer is modelled by a self avoiding polygon of N steps on cubic lattice and
l is the number of steps over which the knot ``spreads'' in a given
configuration. An analysis of extensive Monte Carlo data in equilibrium shows
that the probability distribution of l as a function of N obeys a scaling of
the form p(l,N) ~ l^(-c) f(l/N^D), with c ~ 1.25 and D ~ 1. Both D and c could
be independent of knot type. As a consequence, the knot is weakly localized,
i.e. ~ N^t, with t=2-c ~ 0.75. For a ring with fixed knot type, weak
localization implies the existence of a peculiar characteristic length l^(nu) ~
N^(t nu). In the scaling ~ N^(nu) (nu ~0.58) of the radius of gyration of the
whole ring, this length determines a leading power law correction which is much
stronger than that found in the case of unrestricted topology. The existence of
such correction is confirmed by an analysis of extensive Monte Carlo data for
the radius of gyration. The collapsed regime is studied by introducing in the
model sufficiently strong attractive interactions for nearest neighbor sites
visited by the self-avoiding polygon. In this regime knot length determinations
can be based on the entropic competition between two knotted loops separated by
a slip link. These measurements enable us to conclude that each knot is
delocalized (t ~ 1).Comment: 29 pages, 14 figure
Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels
The next generation of adaptive, intelligent chemical systems will rely on a continuous supply of energy to maintain the functional state. Such systems will require chemical methodology that provides precise control over the energy dissipation process, and thus, the lifetime of the transiently activated function. This manuscript reports on the use of structurally diverse chemical fuels to control the lifetime of two different systems under dissipative conditions: transient signal generation and the transient formation of self-assembled aggregates. The energy stored in the fuels is dissipated at different rates by an enzyme, which in-stalls a dependence of the lifetime of the active system on the chemical structure of the fuel. In the case of transient signal generation, it is shown that different chemical fuels can be used to generate a vast range of signal profiles, allowing temporal control over two orders of magnitude. Regarding self-assembly under dissipative conditions, the ability to control the lifetime using different fuels turns out to be particularly important as stable aggregates are formed only at well-defined surfactant/fuel ratios, meaning that temporal control cannot be achieved by simply changing the fuel concentration
Satellite content and quenching of star formation in galaxy groups at z ~ 1.8
We study the properties of satellites in the environment of massive star-forming galaxies at z ~ 1.8 in the COSMOS field, using a sample of 215 galaxies on the main sequence of star formation with an average mass of ~1011M⊙. At z> 1.5, these galaxies typically trace halos of mass ≳1013M⊙. We use optical-near-infrared photometry to estimate stellar masses and star formation rates (SFR) of centrals and satellites down to ~ 6 × 109M⊙. We stack data around 215 central galaxies to statistically detect their satellite halos, finding an average of ~3 galaxies in excess of the background density. We fit the radial profiles of satellites with simple β-models, and compare their integrated properties to model predictions. We find that the total stellar mass of satellites amounts to ~68% of the central galaxy, while spectral energy distribution modeling and far-infrared photometry consistently show their total SFR to be 25-35% of the central's rate. We also see significant variation in the specific SFR of satellites within the halo with, in particular, a sharp decrease at <100 kpc. After considering different potential explanations, we conclude that this is likely an environmental signature of the hot inner halo. This effect can be explained in the first order by a simple free-fall scenario, suggesting that these low-mass environments can shut down star formation in satellites on relatively short timescales of ~0.3 Gyr
Synthesis, analysis and biological evaluation of novel indolquinonecryptolepine analogues as potential anti-tumour agents.
A small library of cryptolepine analogues were synthesised incorporating halogens and/or nitrogen containing side chains to optimise their interaction with the sugar-phosphate backbone of DNA to give improved binding, interfering with topoisomerase II hence enhancing cytotoxicity. Cell viability, DNA binding and Topoisomerase II inhibition is discussed for these compounds. Fluorescence microscopy was used to investigate the uptake of the synthesised cryptolepines into the nucleus. We report the synthesis and anti-cancer biological evaluation of nine novel cryptolepine analogues, which have greater cytotoxicity than the parent compound and are important lead compounds in the development of novel potent and selective indoloquinone anti-neoplastic agents
Defects in Chiral Columnar Phases: Tilt Grain Boundaries and Iterated Moire Maps
Biomolecules are often very long with a definite chirality. DNA, xanthan and
poly-gamma-benzyl-glutamate (PBLG) can all form columnar crystalline phases.
The chirality, however, competes with the tendency for crystalline order. For
chiral polymers, there are two sorts of chirality: the first describes the
usual cholesteric-like twist of the local director around a pitch axis, while
the second favors the rotation of the local bond-orientational order and leads
to a braiding of the polymers along an average direction. In the former case
chirality can be manifested in a tilt grain boundary phase (TGB) analogous to
the Renn-Lubensky phase of smectic-A liquid crystals. In the latter case we are
led to a new "moire" state with twisted bond order. In the moire state polymers
are simultaneously entangled, crystalline, and aligned, on average, in a common
direction. In the moire state polymers are simultaneously entangled,
crystalline, and aligned, on average, in a common direction. In this case the
polymer trajectories in the plane perpendicular to their average direction are
described by iterated moire maps of remarkable complexity, reminiscent of
dynamical systems.Comment: plain TeX, (33 pages), 17 figures, some uufiled and included, the
remaining available at ftp://ftp.sns.ias.edu/pub/kamien/ or by request to
[email protected]
Brownian motion: a paradigm of soft matter and biological physics
This is a pedagogical introduction to Brownian motion on the occasion of the
100th anniversary of Einstein's 1905 paper on the subject. After briefly
reviewing Einstein's work in its contemporary context, we pursue some lines of
further developments and applications in soft condensed matter and biology.
Over the last century Brownian motion became promoted from an odd curiosity of
marginal scientific interest to a guiding theme pervading all of the modern
(live) sciences.Comment: 30 pages, revie
Physical properties of z>4 submillimeter galaxies in the COSMOS field
We study the physical properties of a sample of 6 SMGs in the COSMOS field, spectroscopically confirmed to lie at z>4. We use new GMRT 325 MHz and 3 GHz JVLA data to probe the rest-frame 1.4 GHz emission at z=4, and to estimate the sizes of the star-forming (SF) regions of these sources, resp. Combining our size estimates with those available in the literature for AzTEC1 and AzTEC3 we infer a median radio-emitting size for our z>4 SMGs of (0.63"+/-0.12")x(0.35"+/-0.05") or 4.1x2.3 kpc^2 (major times minor axis; assuming z=4.5) or lower if we take the two marginally resolved SMGs as unresolved. This is consistent with the sizes of SF regions in lower-redshift SMGs, and local normal galaxies, yet higher than the sizes of SF regions of local ULIRGs. Our SMG sample consists of a fair mix of compact and more clumpy systems with multiple, perhaps merging, components. With an average formation time of ~280 Myr, derived through modeling of the UV-IR SEDs, the studied SMGs are young systems. The average stellar mass, dust temperature, and IR luminosity we derive are M*~1.4x10^11 M_sun, T_dust~43 K, and L_IR~1.3x10^13L_sun, resp. The average L_IR is up to an order of magnitude higher than for SMGs at lower redshifts. Our SMGs follow the correlation between dust temperature and IR luminosity as derived for Herschel-selected 0.1=1.95+/-0.26 for our sample, compared to q~2.6 for IR luminous galaxies at z4 SMGs put them at the high end of the L_IR-T_dust distribution of SMGs, and that our SMGs form a morphologically heterogeneous sample. Thus, further in-depth analyses of large, statistical samples of high-redshift SMGs are needed to fully understand their role in galaxy formation and evolution
- …
