7,657 research outputs found
Molecular Electroporation and the Transduction of Oligoarginines
Certain short polycations, such as TAT and polyarginine, rapidly pass through
the plasma membranes of mammalian cells by an unknown mechanism called
transduction as well as by endocytosis and macropinocytosis. These
cell-penetrating peptides (CPPs) promise to be medically useful when fused to
biologically active peptides. I offer a simple model in which one or more CPPs
and the phosphatidylserines of the inner leaflet form a kind of capacitor with
a voltage in excess of 180 mV, high enough to create a molecular electropore.
The model is consistent with an empirical upper limit on the cargo peptide of
40--60 amino acids and with experimental data on how the transduction of a
polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of
arginines in the CPP and on the CPP concentration. The model makes three
testable predictions.Comment: 15 pages, 5 figure
Model for the unidirectional motion of a dynein molecule
Cytoplasmic dyneins transport cellular organelles by moving on a microtubule
filament. It has been found recently that depending on the applied force and
the concentration of the adenosine triphosphate (ATP) molecules, dynein's step
size varies. Based on these studies, we propose a simple model for dynein's
unidirectional motion taking into account the variations in its step size. We
study how the average velocity and the relative dispersion in the displacement
vary with the applied load. The model is amenable to further extensions by
inclusion of details associated with the structure and the processivity of the
molecule.Comment: 10 pages, 5 figure
Ribosome recycling induces optimal translation rate at low ribosomal availability
Funding statement The authors thank BBSRC (BB/F00513/X1, BB/I020926/1 and DTG) and SULSA for funding. Acknowledgement The authors thank R. Allen, L. Ciandrini, B. Gorgoni and P. Greulich for very helpful discussions and careful reading of the manuscript.Peer reviewedPublisher PD
Helicase activity on DNA as a propagating front
We develop a propagating front analysis, in terms of a local probability of
zipping, for the helicase activity of opening up a double stranded DNA (dsDNA).
In a fixed-distance ensemble (conjugate to the fixed-force ensemble) the front
separates the zipped and unzipped phases of a dsDNA and a drive acts locally
around the front. Bounds from variational analysis and numerical estimates for
the speed of a helicase are obtained. Different types of helicase behaviours
can be distinguished by the nature of the drive.Comment: 5 pages, 5 eps figures; replaced by the published versio
Phase Transitions in Multicomponent String Model
We propose a one-dimensional model of a string decorated with adhesion
molecules (stickers) to mimic multicomponent membranes in restricted
geometries. The string is bounded by two parallel walls and it interacts with
one of them by short range attractive forces while the stickers are attracted
by the other wall. The exact solution of the model in the case of infinite wall
separation predicts both continuous and discontinuous transitions between
phases characterised by low and high concentration of stickers on the string.
Our model exhibits also coexistence of these two phases, similarly to models of
multicomponent membranes.Comment: letter, 8 pages, 3 figure
Bidirectional transport on a dynamic lattice
Bidirectional variants of stochastic many particle models for transport by
molecular motors show a strong tendency to form macroscopic clusters on static
lattices. Inspired by the fact that the microscopic tracks for molecular motors
are dynamical, we study the influence of different types of lattice dynamics on
stochastic bidirectional transport. We observe a transition toward efficient
transport (corresponding to the dissolution of large clusters) controlled by
the lattice dynamics.Comment: 5 pages, 5 figure
Polymer Translocation Dynamics in the Quasi-Static Limit
Monte Carlo (MC) simulations are used to study the dynamics of polymer
translocation through a nanopore in the limit where the translocation rate is
sufficiently slow that the polymer maintains a state of conformational
quasi-equilibrium. The system is modeled as a flexible hard-sphere chain that
translocates through a cylindrical hole in a hard flat wall. In some
calculations, the nanopore is connected at one end to a spherical cavity.
Translocation times are measured directly using MC dynamics simulations. For
sufficiently narrow pores, translocation is sufficiently slow that the mean
translocation time scales with polymer length N according to \propto
(N-N_p)^2, where N_p is the average number of monomers in the nanopore; this
scaling is an indication of a quasi-static regime in which polymer-nanopore
friction dominates. We use a multiple-histogram method to calculate the
variation of the free energy with Q, a coordinate used to quantify the degree
of translocation. The free energy functions are used with the Fokker-Planck
formalism to calculate translocation time distributions in the quasi-static
regime. These calculations also require a friction coefficient, characterized
by a quantity N_{eff}, the effective number of monomers whose dynamics are
affected by the confinement of the nanopore. This was determined by fixing the
mean of the theoretical distribution to that of the distribution obtained from
MC dynamics simulations. The theoretical distributions are in excellent
quantitative agreement with the distributions obtained directly by the MC
dynamics simulations for physically meaningful values of N_{eff}. The free
energy functions for narrow-pore systems exhibit oscillations with an amplitude
that is sensitive to the nanopore length. Generally, larger oscillation
amplitudes correspond to longer translocation times.Comment: 13 pages, 13 figure
Dynamics of active membranes with internal noise
We study the time-dependent height fluctuations of an active membrane
containing energy-dissipating pumps that drive the membrane out of equilibrium.
Unlike previous investigations based on models that neglect either curvature
couplings or random fluctuations in pump activities, our formulation explores
two new models that take both of these effects into account. In the first
model, the magnitude of the nonequilibrium forces generated by the pumps is
allowed to fluctuate temporally. In the second model, the pumps are allowed to
switch between "on" and "off" states. We compute the mean squared displacement
of a membrane point for both models, and show that they exhibit distinct
dynamical behaviors from previous models, and in particular, a superdiffusive
regime specifically arising from the shot noise.Comment: 7 pages, 4 figure
- …
