1,690 research outputs found

    Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities

    Full text link
    We examine in detail the relative equilibria in the four-vortex problem where two pairs of vortices have equal strength, that is, \Gamma_1 = \Gamma_2 = 1 and \Gamma_3 = \Gamma_4 = m where m is a nonzero real parameter. One main result is that for m > 0, the convex configurations all contain a line of symmetry, forming a rhombus or an isosceles trapezoid. The rhombus solutions exist for all m but the isosceles trapezoid case exists only when m is positive. In fact, there exist asymmetric convex configurations when m < 0. In contrast to the Newtonian four-body problem with two equal pairs of masses, where the symmetry of all convex central configurations is unproven, the equations in the vortex case are easier to handle, allowing for a complete classification of all solutions. Precise counts on the number and type of solutions (equivalence classes) for different values of m, as well as a description of some of the bifurcations that occur, are provided. Our techniques involve a combination of analysis and modern and computational algebraic geometry

    Symmetry, bifurcation and stacking of the central configurations of the planar 1+4 body problem

    Full text link
    In this work we are interested in the central configurations of the planar 1+4 body problem where the satellites have different infinitesimal masses and two of them are diametrically opposite in a circle. We can think this problem as a stacked central configuration too. We show that the configuration are necessarily symmetric and the other sattelites has the same mass. Moreover we proved that the number of central configuration in this case is in general one, two or three and in the special case where the satellites diametrically opposite have the same mass we proved that the number of central configuration is one or two saying the exact value of the ratio of the masses that provides this bifurcation.Comment: 9 pages, 2 figures. arXiv admin note: text overlap with arXiv:1103.627

    The Lie-Poisson structure of the reduced n-body problem

    Full text link
    The classical n-body problem in d-dimensional space is invariant under the Galilean symmetry group. We reduce by this symmetry group using the method of polynomial invariants. As a result we obtain a reduced system with a Lie-Poisson structure which is isomorphic to sp(2n-2), independently of d. The reduction preserves the natural form of the Hamiltonian as a sum of kinetic energy that depends on velocities only and a potential that depends on positions only. Hence we proceed to construct a Poisson integrator for the reduced n-body problem using a splitting method.Comment: 26 pages, 2 figure

    Bases for qudits from a nonstandard approach to SU(2)

    Full text link
    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated application of the formula can be used for generating mutually unbiased bases in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU(d) is briefly discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of Theoretical Physics of the JINR and the ICAS at Yerevan State University

    Convex central configurations of the 4-body problem with two pairs of equal masses

    Get PDF
    Agraïments: The first and third authors are partially supported by FAPEMIG grant APQ-001082/14. The third author is partially supported by CNPq grant 472321/2013-7 and by FAPEMIG grant PPM-00516-15. The second and third autors are supported by CAPES CSF-PVE grant 88881.030454/2013-01.MacMillan and Bartky in 1932 proved that there is a unique isosceles trapezoid central configuration of the 4--body problem when two pairs of equal masses are located at adjacent vertices. After this result the following conjecture was well known between people working on central configurations: The isosceles trapezoid is the unique convex central configuration of the planar 4--body problem when two pairs of equal masses are located at adjacent vertices. We prove this conjecture

    Action minimizing orbits in the n-body problem with simple choreography constraint

    Full text link
    In 1999 Chenciner and Montgomery found a remarkably simple choreographic motion for the planar 3-body problem (see \cite{CM}). In this solution 3 equal masses travel on a eight shaped planar curve; this orbit is obtained minimizing the action integral on the set of simple planar choreographies with some special symmetry constraints. In this work our aim is to study the problem of nn masses moving in \RR^d under an attractive force generated by a potential of the kind 1/rα1/r^\alpha, α>0\alpha >0, with the only constraint to be a simple choreography: if q1(t),...,qn(t)q_1(t),...,q_n(t) are the nn orbits then we impose the existence of x \in H^1_{2 \pi}(\RR,\RR^d) such that q_i(t)=x(t+(i-1) \tau), i=1,...,n, t \in \RR, where τ=2π/n\tau = 2\pi / n. In this setting, we first prove that for every d,n \in \NN and α>0\alpha>0, the lagrangian action attains its absolute minimum on the planar circle. Next we deal with the problem in a rotating frame and we show a reacher phenomenology: indeed while for some values of the angular velocity minimizers are still circles, for others the minima of the action are not anymore rigid motions.Comment: 24 pages; 4 figures; submitted to Nonlinearit

    Statistical Mechanics of Vacancy and Interstitial Strings in Hexagonal Columnar Crystals

    Full text link
    Columnar crystals contain defects in the form of vacancy/interstitial loops or strings of vacancies and interstitials bounded by column ``heads'' and ``tails''. These defect strings are oriented by the columnar lattice and can change size and shape by movement of the ends and forming kinks along the length. Hence an analysis in terms of directed living polymers is appropriate to study their size and shape distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in the crystalline phase, a string proliferation transition occurs, leading to a supersolid phase. We estimate the wandering entropy and examine the behaviour in the transition regime. We also calculate numerically the line tension of various species of vacancies and interstitials in a triangular lattice for power-law potentials as well as for a modified Bessel function interaction between columns as occurs in the case of flux lines in type-II superconductors or long polyelectrolytes in an ionic solution. We find that the centered interstitial is the lowest energy defect for a very wide range of interactions; the symmetric vacancy is preferred only for extremely short interaction ranges.Comment: 22 pages (revtex), 15 figures (encapsulated postscript

    Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems

    Full text link
    We introduce a one-parameter generalized oscillator algebra A(k) (that covers the case of the harmonic oscillator algebra) and discuss its finite- and infinite-dimensional representations according to the sign of the parameter k. We define an (Hamiltonian) operator associated with A(k) and examine the degeneracies of its spectrum. For the finite (when k < 0) and the infinite (when k > 0 or = 0) representations of A(k), we construct the associated phase operators and build temporally stable phase states as eigenstates of the phase operators. To overcome the difficulties related to the phase operator in the infinite-dimensional case and to avoid the degeneracy problem for the finite-dimensional case, we introduce a truncation procedure which generalizes the one used by Pegg and Barnett for the harmonic oscillator. This yields a truncated generalized oscillator algebra A(k,s), where s denotes the truncation order. We construct two types of temporally stable states for A(k,s) (as eigenstates of a phase operator and as eigenstates of a polynomial in the generators of A(k,s)). Two applications are considered in this article. The first concerns physical realizations of A(k) and A(k,s) in the context of one-dimensional quantum systems with finite (Morse system) or infinite (Poeschl-Teller system) discrete spectra. The second deals with mutually unbiased bases used in quantum information.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretical as a pape

    Carbon Nanotubes Synthesized in Channels of Alpo4-5 Single Crystals : First X-Ray Scattering Investigations

    Full text link
    Following the synthesis of aligned single-wall carbon nanotubes in the channels of AlPO4-5 zeolite single crystals, we present the first X-ray diffraction and diffuse scattering results. They can be analysed in terms of a partial filling of the zeolite channels by nanotubes with diameter around 4A. The possible selection of only one type of nanotube during the synthesis, due to the constraints imposed by the zeolite host, is discussed.Comment: to appear in Solid State Com
    corecore