1,265 research outputs found
LEIR LONGITUDINAL STUDIES
Towards the end of 2015 and during 2016 there were extensive studies of longitudinal beam dynamics in LEIR aimed at improving extracted intensities. As the driving source of losses early in the ramp was shown to be transverse space charge tune spread a significant improvement came from flattening the beam profile to increase the bunching factor by offsetting the RF frequency from the beam revolution frequency. Further benefits were provided by modulating the RF frequency during capture, leading to emittance blow-up and improved reproducibility. The use of two RF cavities during operation was studied to try and further increase the captured emittance, however after careful alignment of the RF it was found that a hard limit in the bunch heigh of approximately 7 MeV exists. Due to the acceptance limit there was no operational benefit to using both cavities simultaneously
LONGITUDINAL EMITTANCE BLOW-UP AND PRODUCTION OF FUTURE LHC BEAMS
During Long Shutdown 2 the RF systems of the PSB will be replaced with broadband Finemet systems, there will also be an energy increase and many other modifications. This note summarises studies that were done to investigate how to meet the emittance requirements for the LIU-PSB baseline and a possible use of the broadband cavities to improve the capture process. The LIU-PSB baseline requires longitudinal emittance blow-up to 3 eVs with 205 ns bunch length at extraction. The current ferrite RF systems were used, with phase modulation of a high harmonic, to produce 2.8 eVs bunches with 220 ns bunch length, as this is the largest that can currently be transferred to the PS. Larger emittances were possible,demonstrating the ability to reach the LIU-PSB baseline in the future, which is confirmed in simulation. The broadband impedance of the Finemet was exploited to allow RF voltage to be supplied on three harmonics (h=1, h=2, h=3), as opposed to the usual 2. For high intensity beams this lead to an improved capture efficiency for the same total voltage, and future studies are planned to demonstrate if there is an effect on extracted transverse emittance
Neutrino Interactions In Oscillation Experiments
We calculate neutrino induced cross-sections relevant for oscillation
experiments, including the -lepton threshold for quasi-elastic, resonance
and deep inelastic scattering. In addition to threshold effects, we include
nuclear corrections for heavy targets which are moderate for quasi-elastic and
large for single pion production. Nuclear effects for deep inelastic reactions
are small. We present cross sections together with their nuclear corrections
for various channels which are useful for interpreting the experimental results
and for determining parameters of the neutrino sector..Comment: 24 pages, 18 figure
Calcification is not the Achilles' heel of cold-water corals in an acidifying ocean.
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (Ωara ) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold-water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO2 1058 μatm, Ωara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO2 448 μatm, Ωara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2 2879 μatm, Ωara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold-water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes
Blood lipids and prostate cancer: a Mendelian randomization analysis
Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL consortium were analyzed. Allele scores based on single nucleotide polymorphisms (SNPs) previously reported to be uniquely associated with each of low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels, were first validated in an independent dataset, and then entered into logistic regression models to estimate the presence (and direction) of any causal effect of each lipid trait on prostate cancer risk. There was weak evidence for an association between the LDL genetic score and cancer grade: the odds ratio (OR) per genetically instrumented standard deviation (SD) in LDL, comparing high- (≥7 Gleason score) versus low-grade (<7 Gleason score) cancers was 1.50 (95% CI: 0.92, 2.46; P = 0.11). A genetically instrumented SD increase in TGs was weakly associated with stage: the OR for advanced versus localized cancer per unit increase in genetic risk score was 1.68 (95% CI: 0.95, 3.00; P = 0.08). The rs12916-T variant in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was inversely associated with prostate cancer (OR: 0.97; 95% CI: 0.94, 1.00; P = 0.03). In conclusion, circulating lipids, instrumented by our genetic risk scores, did not appear to alter prostate cancer risk. We found weak evidence that higher LDL and TG levels increase aggressive prostate cancer risk, and that a variant in HMGCR (that mimics the LDL lowering effect of statin drugs) reduces risk. However, inferences are limited by sample size and evidence of pleiotropy
Effect of weekend admission on in-hospital mortality and functional outcomes for patients with acute subarachnoid haemorrhage (SAH)
BACKGROUND: Aneurysmal subarachnoid haemorrhage (aSAH) is an acute cerebrovascular event with high socioeconomic impact as it tends to affect younger patients. The recent NCEPOD study looking into management of aSAH has recommended that neurovascular units in the United Kingdom should aim to secure cerebral aneurysms within 48 h and that delays because of weekend admissions can increase the mortality and morbidity attributed to aSAH. METHOD: We used data from a prospective audit of aSAH patients admitted between January 2009 and December 2011. The baseline demographic and clinical features of the weekend and weekday groups were compared using the chi-squared test and T-test. Cox proportional hazards models (Proc Phreg in SAS) were used to calculate the adjusted overall hazard of in-hospital death associated with admission on weekend, adjusting for age, sex, baseline WFNS grade, type of treatment received and time from scan to treatment. Sliding dichotomy analysis was used to estimate the difference in outcomes after SAH at 3 months in weekend and weekday admissions. RESULTS: Those admitted on weekends had a significantly higher scan to treatment time (83.05 ± 83.4 h vs 40.4 ± 53.4 h, P < 0.0001) and admission to treatment (71.59 ± 79.8 h vs 27.5 ± 44.3 h, P < 0.0001) time. After adjustments for adjusted for relevant covariates weekend admission was statistically significantly associated with excess in-hospital mortality (HR = 2.1, CL [1.13–4.0], P = 0.01). After adjustments for all the baseline covariates, the sliding dichotomy analysis did not show effects of weekend admission on long-term outcomes on the good, intermediate and worst prognostic bands. CONCLUSIONS: This study provides important data showing excess in-hospital mortality of patients with SAH on weekend admissions served by the United Kingdom’s National Health Service.; However, there were no effects of weekend admission on long-term outcomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00701-016-2746-z) contains supplementary material, which is available to authorized users
Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis.
Coffee consumption has been shown in some studies to be associated with lower risk of prostate cancer. However, it is unclear if this association is causal or due to confounding or reverse causality. We conducted a Mendelian randomisation analysis to investigate the causal effects of coffee consumption on prostate cancer risk and progression. We used two genetic variants robustly associated with caffeine intake (rs4410790 and rs2472297) as proxies for coffee consumption in a sample of 46,687 men of European ancestry from 25 studies in the PRACTICAL consortium. Associations between genetic variants and prostate cancer case status, stage and grade were assessed by logistic regression and with all-cause and prostate cancer-specific mortality using Cox proportional hazards regression. There was no clear evidence that a genetic risk score combining rs4410790 and rs2472297 was associated with prostate cancer risk (OR per additional coffee increasing allele: 1.01, 95% CI: 0.98,1.03) or having high-grade compared to low-grade disease (OR: 1.01, 95% CI: 0.97,1.04). There was some evidence that the genetic risk score was associated with higher odds of having nonlocalised compared to localised stage disease (OR: 1.03, 95% CI: 1.01, 1.06). Amongst men with prostate cancer, there was no clear association between the genetic risk score and all-cause mortality (HR: 1.00, 95% CI: 0.97,1.04) or prostate cancer-specific mortality (HR: 1.03, 95% CI: 0.98,1.08). These results, which should have less bias from confounding than observational estimates, are not consistent with a substantial effect of coffee consumption on reducing prostate cancer incidence or progression.British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, and the National Institute for Health Research, under the auspices of the UK Clinical Research Collaboration Cancer Research UK. Grant Number: C18281/A19169 RMM and Caroline Relton (Integrative Cancer Epidemiology Programme) Canadian Institutes of Health Research the European Commission's Seventh Framework Programme. Grant Numbers: 223175, HEALTH-F2-2009-223175 Cancer Research UK. Grant Numbers: C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, C16913/A6135 National Institute of Health (NIH) Cancer Post-Cancer GWAS. Grant Number: 1 U19 CA 148537-01 the GAME-ON initiative the European Community's Seventh Framework Programme. Grant Numbers: 223175, HEALTH-F2-2009-223175 Cancer Research UK. Grant Numbers: C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692 the National Institutes of Health. Grant Number: CA128978 Post-Cancer GWAS initiative. Grant Numbers: 1U19 CA148537, 1U19 CA148065, 1U19 CA148112 the GAME-ON initiative the Department of Defence. Grant Number: W81XWH-10-1-0341 the Canadian Institutes of Health Research (CIHR) CIHR Team in Familial Risks of Breast Cancer Komen Foundation for the Cure Breast Cancer Research Foundation. Grant Number: Ovarian Cancer Research Fund VicHealth and Cancer Council Victoria Australian NHMRC. Grant Numbers: 209057, 251553, 504711 Cancer Council Victoria Australian Institute of Health and Welfare (AIHW) National Death Index and the Australian Cancer Database U.K. Health Technology Assessment (HTA) Programme of the NIH Research. Grant Numbers: HTA 96/20/99, ISRCTN20141297 Prodigal study and the ProMPT (Prostate Mechanisms of Progression and Treatment) National Cancer Research Institute (NCRI) Department of Health, the Medical Research Council and Cancer Research UK. Grant Number: G0500966/75466 Cancer Research UK. Grant Number: C5047/A7357 NIHR Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden NHS Foundation Trust National Institute for Health Research Bristol Nutrition Biomedical Research Unit based at University Hospitals Bristol NHS Foundation Trust and the University of Bristol FCH, DEN and JLD are NIHR Senior Investigators MRC and the University of Bristol. Grant Numbers: G0600705, MC_UU_12013/6This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/ijc.3046
Gene and pathway level analyses of germline DNA-repair gene variants and prostate cancer susceptibility using the iCOGS-genotyping array.
BACKGROUND: Germline mutations within DNA-repair genes are implicated in susceptibility to multiple forms of cancer. For prostate cancer (PrCa), rare mutations in BRCA2 and BRCA1 give rise to moderately elevated risk, whereas two of B100 common, low-penetrance PrCa susceptibility variants identified so far by genome-wide association studies implicate RAD51B and RAD23B. METHODS: Genotype data from the iCOGS array were imputed to the 1000 genomes phase 3 reference panel for 21 780 PrCa cases and 21 727 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium. We subsequently performed single variant, gene and pathway-level analyses using 81 303 SNPs within 20 Kb of a panel of 179 DNA-repair genes. RESULTS: Single SNP analyses identified only the previously reported association with RAD51B. Gene-level analyses using the SKAT-C test from the SNP-set (Sequence) Kernel Association Test (SKAT) identified a significant association with PrCa for MSH5. Pathway-level analyses suggested a possible role for the translesion synthesis pathway in PrCa risk and Homologous recombination/Fanconi Anaemia pathway for PrCa aggressiveness, even though after adjustment for multiple testing these did not remain significant. CONCLUSIONS: MSH5 is a novel candidate gene warranting additional follow-up as a prospective PrCa-risk locus. MSH5 has previously been reported as a pleiotropic susceptibility locus for lung, colorectal and serous ovarian cancers.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/bjc.2016.5
- …
