428 research outputs found

    Mercaptophosphonic acids as efficient linkers in quantum dot sensitized solar cells

    Get PDF
    This work was supported by the Agence Nationale de la Recherche, project QuePhélec (ANR-13-BS10-0011-01). MTS and IDWS are thankful to ERC for financial support for exciton diffusion project, grant number 321305. AKB and IDWS also acknowledge financial support from EPSRC programme grant: structured light, EP/J01771X.Control over the deposition of quantum dots (QDs) on nanostructured semiconductors is very important for the photovoltaic performance of QD sensitized solar cells. The best control is typically achieved using bifunctional molecular linkers, such as mercaptopropionic acid (MPA), to attach the QDs to metal oxides in a specific manner; however some materials, such as ZnO, are not compatible with these molecules due to their pH sensitivity. We have developed new linkers, mercaptophosphonic acids of different length, which allow efficient functionalization of ZnO nanowires and also mesoporous TiO2 without damaging their surface. Detailed XPS and contact angle studies of the mechanism of self-assembly of these acids show that their strong chelation of the oxide surface prevents protonic attack and etching. Using these linkers, we show that colloidal ternary quantum dots, CuInS2, can be conformally and homogeneously deposited on the functionalized metal oxides. Photophysical studies by means of time-resolved photoluminescence spectroscopy confirm efficient electron transfer from the QDs to the metal oxides with the rate and efficiency scaling with respect to the linker length and nature. The efficiency of the QD sensitized solar cells fabricated with such assemblies also strongly depends on the linkers used and follows the trends observed for the charge transfer.PostprintPeer reviewe

    Sensing Of Aqueous Phosphates By Polymers With Dual Modes Of Signal Transduction

    Get PDF
    A new approach to sensing of aqueous phosphate-related anions based on chromogenic conductive polymers is demonstrated. This method utilizes synergy between low-level p-doping in a polythiophene polymer and hydrogen bonding to increase anion-sensor affinity. These chromogenic conductive polymers show anion-specific changes both in color and in conductivity upon increasing concentration of anions, thus providing two independent modes of signal transduction

    Observation of compositional domains within individual copper indium sulfide quantum dots

    Get PDF
    The origin of photoluminescence in copper indium sulfide (CIS) quantum dots (Qdots) has previously been ascribed to a donor-acceptor pair (DAP) recombination, with a crystal lattice defect implicated as the origin of the donor state. In this study, electron energy-loss spectroscopy (EELS) was used to observe defect-rich compositional domains within individual CIS Qdots, supporting a model of defect-state-mediated photoluminescence for these particles, and identifying them as an ideal model system for future study of lattice defects on Qdot properties

    Benzothiadiazoles And Dipyrrolyl Quinoxalines With Extended Conjugated Chromophores-fluorophores And Anion Sensors

    Get PDF
    Stable fluorescent chromophores find use in a growing number of practical applications, including their utility as laser dyes,1 emitters in light-emitting diodes,2 photoconductors,3 optical data storage,4 and optical switches.5 Stable fluorophores with high quantum yields are widely used in fluorescent sensors6 and labels.7 These became very popular lately, owing to their potential for high sensitivity at low concentration coupled with decreased cost of the required equipment.8 Recently, we have described a new class of fluorescent anion sensors bearing extended conjugated chromophores9 with incorporated 2,3-di(1H-2-pyrrolyl)quinoxaline, (DPQ), as the anion recognition element.10 Literature shows that DPQ binds anions via hydrogen bonding between pyrrole NH and anions, the hydrogen bonding nature of the DPQ−anion complex was demonstrated by 1H NMR.10a In this paper, we provide a full account of our efforts including synthesis and photophysical properties of DPQ-based fluorescent anion sensors with extended conjugated chromophores S1−S6 (Figure 1), including their benzothiadiazole precursors F1−F6, which appears to be an interesting set of highly stable fluorescent chromophores

    Mercaptophosphonic acids as efficient linkers in quantum dot sensitized solar cells

    Get PDF
    Control over the deposition of quantum dots (QDs) on nanostructured semiconductors is very important for the photovoltaic performance of QD sensitized solar cells. The best control is typically achieved using bifunctional molecular linkers, such as mercaptopropionic acid (MPA), to attach the QDs to metal oxides in a specific manner; however some materials, such as ZnO, are not compatible with these molecules due to their pH sensitivity. We have developed new linkers, mercaptophosphonic acids of different length, which allow efficient functionalization of ZnO nanowires and also mesoporous TiO2 without damaging their surface. Detailed XPS and contact angle studies of the mechanism of self-assembly of these acids show that their strong chelation of the oxide surface prevents protonic attack and etching. Using these linkers, we show that colloidal ternary quantum dots, CuInS2, can be conformally and homogeneously deposited on the functionalized metal oxides. Photophysical studies by means of time-resolved photoluminescence spectroscopy confirm efficient electron transfer from the QDs to the metal oxides with the rate and efficiency scaling with respect to the linker length and nature. The efficiency of the QD sensitized solar cells fabricated with such assemblies also strongly depends on the linkers used and follows the trends observed for the charge transfer

    Efficient eco-friendly inverted quantum dot sensitized solar cells

    Get PDF
    Recent progress in quantum dot (QD) sensitized solar cells has demonstrated the possibility of low-cost and efficient photovoltaics. However, the standard device structure based on n-type materials often suffers from slow hole injection rate, which may lead to unbalanced charge transport. We have fabricated efficient p-type (inverted) QD sensitized cells, which combine the advantages of conventional QD cells with p-type dye sensitized configurations. Moreover, p-type QD sensitized cells can be used in highly promising tandem configurations with n-type ones. QDs without toxic Cd and Pb elements and with improved absorption and stability were successfully deposited onto mesoporous NiO electrode showing good coverage and penetration according to morphological analysis. Detailed photophysical charge transfer studies showed that high hole injection rates (108 s−1) observed in such systems are comparable with electron injection in conventional n-type QD assemblies. Inverted solar cells fabricated with various QDs demonstrate excellent power conversion efficiencies of up to 1.25%, which is 4 times higher than the best values for previous inverted QD sensitized cells. Attempts to passivate the surface of the QDs show that traditional methods of reduction of recombination in the QD sensitized cells are not applicable to the inverted architectures

    CuSCN Nanowires as Electrodes for p-Type Quantum Dot Sensitized Solar Cells: Charge Transfer Dynamics and Alumina Passivation

    Get PDF
    Quantum dot sensitized solar cells (QDSSCs) are a promising photovoltaic technology due to their low cost and simplicity of fabrication. Most QDSSCs have an n-type configuration with electron injection from QDs into TiO2, which generally leads to unbalanced charge transport (slower hole transfer rate) limiting their efficiency and stability. We have previously demonstrated that p-type (inverted) QD sensitized cells have the potential to solve this problem. Here we show for the first time that electrodeposited CuSCN nanowires can be used as a p-type nanostructured electrode for p-QDSSCs. We demonstrate their efficient sensitization by heavy metal free CuInSxSe2-x quantum dots. Photophysical studies show efficient and fast hole injection from the excited QDs into the CuSCN nanowires. The transfer rate is strongly time dependent but the average rate of 2.5 × 109 s–1 is much faster than in previously studied sensitized systems based on NiO. Moreover, we have developed an original experiment allowing us to calculate independently the rates of charge injection and QD regeneration by the electrolyte and thus to determine which of these processes occurs first. The average QD regeneration rate (1.3 × 109 s–1) is in the same range as the hole injection rate, resulting in an overall balanced charge separation process. To reduce recombination in the sensitized systems and improve their stability, the CuSCN nanowires were coated with thin conformal layers of Al2O3 using atomic layer deposition (ALD) and fully characterized by XPS and EDX. We demonstrate that the alumina layer protects the surface of CuSCN nanowires, reduces charge recombination, and increases the overall charge transfer rate up to 1.5 times depending on the thickness of the deposited Al2O3 layer

    2,2,3,3′-Tetra­phenyl-7,7′-biquinoxaline

    Get PDF
    In the crystal structure of the title compound, C40H26N4, mol­ecules reside on crystallographic centers of inversion and are linked via C—H⋯N inter­actions about inversion centers into one-dimensional chains: longer C—H⋯π(arene) inter­actions complete the inter­molecular inter­actions

    CuSCN nanowires as electrodes for p-type quantum dot sensitized solar cells : charge transfer dynamics and alumina passivation

    Get PDF
    Funding: European Research Council (grant number 321305) and the EPSRC (grant numbers EP/L017008/1 and EP/M506631/1). IDWS is a Royal Society Wolfson Research Merit award holder.Quantum dot sensitized solar cells (QDSSCs) are a promising photovoltaic technology due to their low cost and simplicity of fabrication. Most QDSSCs have an n-type configuration with electron injection from QDs into TiO2, which generally leads to unbalanced charge transport (slower hole transfer rate) limiting their efficiency and stability. We have previously demonstrated that p-type (inverted) QD sensitized cells have the potential to solve this problem. Here we show for the first time that electrodeposited CuSCN nanowires can be used as a p-type nanostructured electrode for p-QDSSCs. We demonstrate their efficient sensitization by heavy metal free CuInSxSe2-x quantum dots. Photophysical studies show efficient and fast hole injection from the excited QDs into the CuSCN nanowires. The transfer rate is strongly time dependent but the average rate of 2.5 x 109 s-1 is much faster than in previously studied sensitized systems based on NiO. Moreover, we have developed an original experiment allowing us to calculate independently the rates of charge injection and QD regeneration by the electrolyte and thus to determine which of these processes occurs first. The average QD regeneration rate (1.33 x 109 s-1 ) is in the same range as the hole injection rate, resulting in an overall balanced charge separation process. To reduce recombination in the sensitized systems and improve their stability, the CuSCN nanowires were coated with thin conformal layers of Al2O3 using atomic layer deposition (ALD) and fully characterized by XPS and EDX. We demonstrate that the alumina layer protects the surface of CuSCN nanowires, reduces charge recombination and increases the overall charge transfer rate up to 1.5 times depending on the thickness of the deposited Al2O3 layer.PostprintPeer reviewe

    Following the Kinetics of Barium Titanate Nanocrystal Formation in Benzyl Alcohol Under Near‐Ambient Conditions

    Get PDF
    In complex chemical syntheses (e.g., coprecipitation reactions), nucleation, growth, and coarsening often occur concurrently, obscuring the individual processes. Improved knowledge of these processes will help to better understand and optimize the reaction protocol. Here, a form‐free and model independent approach, based on a combination of time‐resolved small/wide‐angle X‐ray scattering, is employed to elucidate the effect of reaction parameters (such as precursor concentration, reactant stoichiometry, and temperature) on the nucleation, crystallization, and growth phenomena during the formation of nanocrystalline barium titanate. The strength of this approach is that it relies solely on the total scattered intensity (i.e., scattering invariant) of the investigated system, and no prior knowledge is required. As such, it can be widely applied to other synthesis protocols and material's systems. Through the scattering invariant, it is found that the amorphous‐to‐crystalline transformation of barium titanate is predominantly determined by the total amount of water released from the gel‐like barium hydroxide octahydrate precursor, and three rate‐limiting regimes are established. As a result of this improved understanding of the effect of varying reaction conditions, elementary boundary conditions can be set up for a better control of the barium titanate nanocrystal synthesis
    corecore