189 research outputs found

    The Role of Migration for Workplace Safety in Italy

    Get PDF
    Using microdata from the Labour Force Survey (2009–2019) and special Labour Force Surveys conducted in 2007, 2013, and 2020 in Italy, this study examines (i) whether immigrants are more likely than native-born workers to experience occupa- tional injuries and job-related health problems and (ii) the effects of immigration on the allocation of occupational risks. We also contribute to the literature in this context by considering differences between natives and immigrants that may exist outside indi- vidual characteristics (age, gender), such as education, the age at which immigrants entered Italy and the length of stay. We find that immigrants are involved in riskier and more unsafe tasks; moreover, immigration in the last decade has led to a reduction in the average physical burden of native-born workers. Our results have important policy implications because they might be weighed against the racist sentiments of the local community

    The role of education in innovation-migration nexus in Europe

    Get PDF
    Using panel data between 2012 and 2020, this research examines the relationship between the flows of low-skilled immigrants and innovation in the EU-15 group of nations and Switzerland. The empirical component is generated from a theoretical model that we construct. After addressing the potential endogeneity of the share of immigrants in the population, we find that regions with a relatively high immigrant population have a favorable impact on the generation of patent applications, whereas low-skilled immigrants have the reverse effects on innovation. Hence, the results are in line with the proposition in the theoretical section that lower-educated immigrants determine social decreasing returns in the economy

    Experimental validation of a subject-specific finite element model of lumbar spine segment using digital image correlation

    Get PDF
    Pathologies such as cancer metastasis and osteoporosis strongly affect the mechanical properties of the vertebral bone and increase the risk of fragility fractures. The prediction of the fracture risk with a patient-specific model, directly generated from the diagnostic images of the patient, could help the clinician in the choice of the correct therapy to follow. But before such models can be used to support any clinical decision, their credibility must be demonstrated through verification, validation, and uncertainty quantification. In this study we describe a procedure for the generation of such patient-specific finite element models and present a first validation of the kinematics of the spine segment. Quantitative computed tomography images of a cadaveric lumbar spine segment presenting vertebral metastatic lesions were used to generate the model. The applied boundary conditions replicated a specific experimental test where the spine segment was loaded in compression-flexion. Model predictions in terms of vertebral surface displacements were compared against the full-field experimental displacements measured with Digital Image Correlation. A good agreement was obtained from the local comparison between experimental data and simulation results (R2 > 0.9 and RMSE% <8%). In conclusion, this work demonstrates the possibility to apply the developed modelling pipeline to predict the displacement field of human spine segment under physiological loading conditions, which is a first fundamental step in the credibility assessment of these clinical decision-support technology

    Finite Element Modeling Application in Forensic Practice: A Periprosthetic Femoral Fracture Case Study

    Get PDF
    The incidence of periprosthetic fractures has rapidly increased in the last two decades and has been the cause of a large number of revision surgeries and permanent physical disability for many patients, as well as a significant socioeconomic burden for many nations. This research deals with a periprosthetic femur fracture real event, occurred following a total hip arthroplasty and treated with one of the most widespread internal fixation methods: the implant of a periprosthetic femur plate system. A Finite Element analysis was performed to investigate the implanted femur plate break after a short follow-up and to understand the plate break causes. Such events are currently object of forensic debate as more and more often hospitals, surgeons, and medical device manufacturers are denounced by patients to whom similar events occur. In this work, different load situations acting on the femur during daily and incidental activities were simulated, in order to validate the correct behavior of the plate, according to the intended use recommended by the manufacturer. The analysis demonstrates that the plate failure can occur in situations of unconventional loading such as that caused by stumbling and in presence of incomplete bone healing

    Identification of redox-sensitive transcription factors as markers of malignant pleural mesothelioma.

    Get PDF
    Although asbestos has been banned in most countries around the world, malignant pleural mesothelioma (MPM) is a current problem. MPM is an aggressive tumor with a poor prognosis, so it is crucial to identify new markers in the preventive field. Asbestos exposure induces oxidative stress and its carcinogenesis has been linked to a strong oxidative damage, event counteracted by antioxidant systems at the pulmonary level. The present study has been focused on some redox-sensitive transcription factors that regulate cellular antioxidant defense and are overexpressed in many tumors, such as Nrf2 (Nuclear factor erythroid 2-related factor 2), Ref-1 (Redox effector factor 1), and FOXM1 (Forkhead box protein M1). The research was performed in human mesothelial and MPM cells. Our results have clearly demonstrated an overexpression of Nrf2, Ref-1, and FOXM1 in mesothelioma towards mesothelium, and a consequent activation of downstream genes controlled by these factors, which in turn regulates antioxidant defense. This event is mediated by oxidative free radicals produced when mesothelial cells are exposed to asbestos fibers. We observed an increased expression of Nrf2, Ref-1, and FOXM1 towards untreated cells, confirming asbestos as the mediator of oxidative stress evoked at the mesothelium level. These factors can therefore be considered predictive biomarkers of MPM and potential pharmacological targets in the treatment of this aggressive cancer

    Personalised 3D Assessment of Trochanteric Soft Tissues Improves HIP Fracture Classification Accuracy

    Get PDF
    Passive soft tissues surrounding the trochanteric region attenuate fall impact forces and thereby control hip fracture risk. The degree of attenuation is related to Soft Tissue Thickness (STT). STT at the neutral hip impact orientation, estimated using a regression relation in body mass index (BMI), was previously shown to influence the current absolute risk of hip fracture (ARF0) and its fracture classification accuracy. The present study investigates whether fracture classification using ARF0 improves when STT is determined from the subject’s Computed-Tomography (CT) scans (i.e. personalised) in an orientation-specific (i.e. 3D) manner. STT is calculated as the shortest distance along any impact orientation between a semi-automatically segmented femur surface and an automatically segmented soft tissue/air boundary. For any subject, STT along any of the 33 impact orientations analysed always exceeds the value estimated using BMI. Accuracy of fracture classification using ARF0 improves when using personalised 3D STT estimates (AUC = 0.87) instead of the BMI-based STT estimate (AUC = 0.85). The improvement is smaller (AUC = 0.86) when orientation-specificity of CT-based STT is suppressed and is nil when personalisation is suppressed instead. Thus, fracture classification using ARF0 improves when CT is used to personalise STT estimates and improves further when, in addition, the estimates are orientation specific

    Comparing the predictions of CT-based subject-specific finite element models of human metastatic vertebrae with digital volume correlation measurements

    Get PDF
    Several conditions can increase the incidence of vertebral fragility fractures, including metastatic bone disease. Computational tools could help clinicians estimate the risk of vertebral fracture in these patients; however, comparison with in vitro data is mandatory before using them in clinical practice. Nine spine segments were tested under compression and imaged with micro-computed tomography (µCT). The displacement field was calculated for each vertebra using a global digital volume correlation (DVC) approach. Subject-specific homogenised finite element models of each vertebra were built from µCT images, applying experimentally matched boundary conditions at the endplates. Numerical and experimental displacements, reaction forces, and locations showing higher strain concentrations were eventually compared. Additionally, given that µCT cannot be performed in clinical settings, the outcomes of a µCT-based model were also compared to those of a model built from clinical CT scans of the same specimen. Good agreement between DVC and µCT-based FE displacements was found, both for healthy (R 2 = 0.69 ÷ 0.83, RMSE = 3 ÷ 22%, max error &lt; 45 μm) and metastatic (R 2 = 0.64 ÷ 0.93, RMSE = 5 ÷ 18%, max error &lt; 54 μm) vertebrae. Strong correlations were found between µCT-based and clinical CT-based FE model outcomes (R 2 = 0.99, RMSE &lt; 1.3%, max difference = 6 μm). Furthermore, the models qualitatively identified the most deformed regions identified with the experiments. In conclusion, the combination of experimental full-field technique and in-silico modelling enabled the development of a promising pipeline to validate bone strength predictors in the elastic range. Further improvements are needed to analyse vertebral post-yield behaviour better
    corecore