68 research outputs found
Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p < 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p > 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
DESIGN AND CONSTRUCTION OF A GREENHOUSE FOR EVALUATION OF THE PERFORMANCE OF OKRA IN THE SAHEL REGION OF ONDO STATE, NIGERIA.
Approximating Solutions of Nonlinear Abstract Measure First Order Differential Equations via Hybrid Fixed Point Theory
Reinventing the Role of Academic Libraries in Nigeria to be Active Contributors to Student Wellness in the COVID – 19 Pandemic
Un modelo de reglas de asociación basado en LifeSpans
El objetivo de esta tesis es la definición de un modelo de regla de asociación con marco temporal y el desarrollo de técnicas y algoritmos para la extracción y análisis de información en grandes volúmenes de datos. El problema del descubrimiento de conocimiento en grandes bases de datos, en particular el representado por reglas de asociación, ha sido extensivamente estudiado en sus diversas formas. El punto de vista temporal en las reglas de asociación ha sido introducido desde dos vertientes: el enfoque de calendarios y el presentado en esta tesis, basado en la definición de lifespan o período de vida de los objetos analizados. Se describirá el modelo propuesto, se analizará su relación con otras propuestas y se presentarán algoritmos para la implementación de dicho modelo. En la parte experimental se presentarán resultados obtenidos, relacionados tanto con el desempeño computacional de los algoritmos propuestos, como los de utilidad práctica en el proceso de análisis final de resultados. A estos efectos se emplearán bases de datos sintéticas de amplia utilización y bases con datos reales en las que se pueden observar las ventajas del uso del modelo aquí presentado. Con el fin de extender las posibilidades de análisis se asocia a los objetos estudiados la noción de comportamiento temporal. Dicho comportamiento, considerado como una serie temporal, es pasible de ser estudiado eficientemente a través de su representación por medio de wavelets.</jats:p
- …
