99 research outputs found
Climates of Warm Earth-like Planets I: 3-D Model Simulations
We present a large ensemble of simulations of an Earth-like world with
increasing insolation and rotation rate. Unlike previous work utilizing
idealized aquaplanet configurations we focus our simulations on modern
Earth-like topography. The orbital period is the same as modern Earth, but with
zero obliquity and eccentricity. The atmosphere is 1 bar N-dominated with
CO=400 ppmv and CH=1 ppmv. The simulations include two types of
oceans; one without ocean heat transport (OHT) between grid cells as has been
commonly used in the exoplanet literature, while the other is a fully coupled
dynamic bathtub type ocean. The dynamical regime transitions that occur as day
length increases induce climate feedbacks producing cooler temperatures, first
via the reduction of water vapor with increasing rotation period despite
decreasing shortwave cooling by clouds, and then via decreasing water vapor and
increasing shortwave cloud cooling, except at the highest insolations.
Simulations without OHT are more sensitive to insolation changes for fast
rotations while slower rotations are relatively insensitive to ocean choice.
OHT runs with faster rotations tend to be similar with gyres transporting heat
poleward making them warmer than those without OHT. For slower rotations OHT is
directed equator-ward and no high latitude gyres are apparent. Uncertainties in
cloud parameterization preclude a precise determination of habitability but do
not affect robust aspects of exoplanet climate sensitivity. This is the first
paper in a series that will investigate aspects of habitability in the
simulations presented herein. The datasets from this study are opensource and
publicly available.Comment: 27 pages ApJS accepted. Expanded Introduction and several additional
figure
Habitable Climate Scenarios for Proxima Centauri b With a Dynamic Ocean
The nearby exoplanet Proxima Centauri b will be a prime future target for
characterization, despite questions about its retention of water. Climate
models with static oceans suggest that an Earth-like Proxima b could harbor a
small dayside region of surface liquid water at fairly warm temperatures
despite its weak instellation. We present the first 3-dimensional climate
simulations of Proxima b with a dynamic ocean. We find that an ocean-covered
Proxima b could have a much broader area of surface liquid water but at much
colder temperatures than previously suggested, due to ocean heat transport and
depression of the freezing point by salinity. Elevated greenhouse gas
concentrations do not necessarily produce more open ocean area because of
possible dynamic regime transitions. For an evolutionary path leading to a
highly saline present ocean, Proxima b could conceivably be an inhabited,
mostly open ocean planet dominated by halophilic life. For an ocean planet in
3:2 spin-orbit resonance, a permanent tropical waterbelt exists for moderate
eccentricity. Simulations of Proxima Centauri b may also be a model for the
habitability of planets receiving similar instellation from slightly cooler or
warmer stars, e.g., in the TRAPPIST-1, LHS 1140, GJ 273, and GJ 3293 systems.Comment: Submitted to Astrobiology; 38 pages, 12 figures, 5 table
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments
with Dynamics (ROCKE-3D) is a 3-Dimensional General Circulation Model (GCM)
developed at the NASA Goddard Institute for Space Studies for the modeling of
atmospheres of Solar System and exoplanetary terrestrial planets. Its parent
model, known as ModelE2 (Schmidt et al. 2014), is used to simulate modern and
21st Century Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing
effort to expand the capabilities of ModelE2 to handle a broader range of
atmospheric conditions including higher and lower atmospheric pressures, more
diverse chemistries and compositions, larger and smaller planet radii and
gravity, different rotation rates (slowly rotating to more rapidly rotating
than modern Earth, including synchronous rotation), diverse ocean and land
distributions and topographies, and potential basic biosphere functions. The
first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds
within the Solar System such as paleo-Earth, modern and paleo-Mars,
paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range
of temperatures, pressures, and atmospheric constituents we can then expand its
capabilities further to those exoplanetary rocky worlds that have been
discovered in the past and those to be discovered in the future. We discuss the
current and near-future capabilities of ROCKE-3D as a community model for
studying planetary and exoplanetary atmospheres.Comment: Revisions since previous draft. Now submitted to Astrophysical
Journal Supplement Serie
Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans
The role of rotation in planetary atmospheres plays an important role in regulating atmospheric and oceanic heat flow, cloud formation and precipitation. Using the Goddard Institute for Space Studies (GISS) three dimension General Circulation Model (3D-GCM) we demonstrate how varying rotation rate and increasing the incident solar flux on a planet are related to each other and may allow the inner edge of the habitable zone to be much closer than many previous habitable zone studies have indicated. This is shown in particular for fully coupled ocean runs -- some of the first that have been utilized in this context. Results with a 100m mixed layer depth and our fully coupled ocean runs are compared with those of Yang et al. 2014, which demonstrates consistency across models. However, there are clear differences for rotations rates of 1-16x present earth day lengths between the mixed layer and fully couple ocean models, which points to the necessity of using fully coupled oceans whenever possible. The latter was recently demonstrated quite clearly by Hu & Yang 2014 in their aquaworld study with a fully coupled ocean when compared with similar mixed layer ocean studies and by Cullum et al. 2014. Atmospheric constituent amounts were also varied alongside adjustments to cloud parameterizations (results not shown here). While the latter have an effect on what a planet's global mean temperature is once the oceans reach equilibrium they do not qualitatively change the overall relationship between the globally averaged surface temperature and incident solar flux for rotation rates ranging from 1 to 256 times the present Earth day length. At the same time this study demonstrates that given the lack of knowledge about the atmospheric constituents and clouds on exoplanets there is still a large uncertainty as to where a planet will sit in a given star's habitable zone
Dynamically Triangulated Ising Spins in Flat Space
A model describing Ising spins with short range interactions moving randomly
in a plane is considered. In the presence of a hard core repulsion, which
prevents the Ising spins from overlapping, the model is analogous to a
dynamically triangulated Ising model with spins constrained to move on a flat
surface. It is found that as a function of coupling strength and hard core
repulsion the model exhibits multicritical behavior, with first and second
order transition lines terminating at a tricritical point. The thermal and
magnetic exponents computed at the tricritical point are consistent with the
exact two-matrix model solution of the random Ising model, introduced
previously to describe the effects of fluctuating geometries.Comment: (10 pages + 4 figures), CERN-Th-7577/9
CMIP5 Historical Simulations (1850-2012) with GISS ModelE2
Observations of climate change during the CMIP5 extended historical period (1850-2012) are compared to trends simulated by six versions of the NASA Goddard Institute for Space Studies ModelE2 Earth System Model. The six models are constructed from three versions of the ModelE2 atmospheric general circulation model, distinguished by their treatment of atmospheric composition and the aerosol indirect effect, combined with two ocean general circulation models, HYCOM and Russell. Forcings that perturb the model climate during the historical period are described. Five-member ensemble averages from each of the six versions of ModelE2 simulate trends of surface air temperature, atmospheric temperature, sea ice and ocean heat content that are in general agreement with observed trends, although simulated warming is slightly excessive within the past decade. Only simulations that include increasing concentrations of long-lived greenhouse gases match the warming observed during the twentieth century. Differences in twentieth-century warming among the six model versions can be attributed to differences in climate sensitivity, aerosol and ozone forcing, and heat uptake by the deep ocean. Coupled models with HYCOM export less heat to the deep ocean, associated with reduced surface warming in regions of deepwater formation, but greater warming elsewhere at high latitudes along with reduced sea ice. All ensembles show twentieth-century annular trends toward reduced surface pressure at southern high latitudes and a poleward shift of the midlatitude westerlies, consistent with observations
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model
Configuration and Assessment of the GISS ModelE2 Contributions to the CMIP5 Archive
We present a description of the ModelE2 version of the Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) and the configurations used in the simulations performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). We use six variations related to the treatment of the atmospheric composition, the calculation of aerosol indirect effects, and ocean model component. Specifically, we test the difference between atmospheric models that have noninteractive composition, where radiatively important aerosols and ozone are prescribed from precomputed decadal averages, and interactive versions where atmospheric chemistry and aerosols are calculated given decadally varying emissions. The impact of the first aerosol indirect effect on clouds is either specified using a simple tuning, or parameterized using a cloud microphysics scheme. We also use two dynamic ocean components: the Russell and HYbrid Coordinate Ocean Model (HYCOM) which differ significantly in their basic formulations and grid. Results are presented for the climatological means over the satellite era (1980-2004) taken from transient simulations starting from the preindustrial (1850) driven by estimates of appropriate forcings over the 20th Century. Differences in base climate and variability related to the choice of ocean model are large, indicating an important structural uncertainty. The impact of interactive atmospheric composition on the climatology is relatively small except in regions such as the lower stratosphere, where ozone plays an important role, and the tropics, where aerosol changes affect the hydrological cycle and cloud cover. While key improvements over previous versions of the model are evident, these are not uniform across all metrics
- …
