785 research outputs found

    Inter-spikes-intervals exponential and gamma distributions study of neuron firing rate for SVITE motor control model on FPGA

    Get PDF
    This paper presents a statistical study on a neuro-inspired spike-based implementation of the Vector-Integration-To-End-Point motor controller (SVITE) and compares its deterministic neuron-model stream of spikes with a proposed modification that converts the model, and thus the controller, in a Poisson like spike stream distribution. A set of hardware pseudo-random numbers generators, based on a Linear Feedback Shift Register (LFSR), have been introduced in the neuron-model so that they reach a closer biological neuron behavior. To validate the new neuron-model behavior a comparison between the Inter-Spikes-Interval empirical data and the Exponential and Gamma distributions has been carried out using the Kolmogorov–Smirnoff test. An in-hardware validation of the controller has been performed in a Spartan6 FPGA to drive directly with spikes DC motors from robotics to study the behavior and viability of the modified controller with random components. The results show that the original deterministic spikes distribution of the controller blocks can be swapped with Poisson distributions using 30-bit LFSRs. The comparative between the usable controlling signals such as the trajectory and the speed profile using a deterministic and the new controller show a standard deviation of 11.53 spikes/s and 3.86 spikes/s respectively. These rates do not affect our system because, within Pulse Frequency Modulation, in order to drive the motors, time length can be fixed to spread the spikes. Tuning this value, the slow rates could be filtered by the motor. Therefore, this SVITE neuro-inspired controller can be integrated within complex neuromorphic architectures with Poisson-like neurons

    Synthetic Generation of Events for Address-Event-Representation Communications

    Get PDF
    Address-Event-Representation (AER) is a communications protocol for transferring images between chips, originally developed for bio-inspired image processing systems. Such systems may consist of a complicated hierarchical structure with many chips that transmit images among them in real time, while performing some processing (for example, convolutions). In developing AER based systems it is very convenient to have available some kind of means of generating AER streams from on-computer stored images. In this paper we present a method for generating AER streams in real time from images stored in a computer’s memory. The method exploits the concept of linear feedback shift register random number generators. This method has been tested by software and compared to other possible algorithms for generating AER streams. It has been found that the proposed method yields a minimum error with respect to the ideal situation. A hardware platform that exploits this technique is currently under development

    Improved Contrast Sensitivity DVS and its Application to Event-Driven Stereo Vision

    Get PDF
    This paper presents a new DVS sensor with one order of magnitude improved contrast sensitivity over previous reported DVSs. This sensor has been applied to a bio-inspired event-based binocular system that performs 3D event-driven reconstruction of a scene. Events from two DVS sensors are matched by using precise timing information of their ocurrence. To improve matching reliability, satisfaction of epipolar geometry constraint is required, and simultaneously available information on the orientation is used as an additional matching constraint.Ministerio de Economía y Competitividad PRI-PIMCHI-2011-0768Ministerio de Economía y Competitividad TEC2009-10639-C04-01Junta de Andalucía TIC-609

    Live Demonstration: Retinal ganglion cell software and FPGA implementation for object detection and tracking

    Get PDF
    This demonstration shows how object detection and tracking are possible thanks to a new implementation which takes inspiration from the visual processing of a particular type of ganglion cell in the retina

    An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors

    Get PDF
    Event-Driven vision sensing is a new way of sensing visual reality in a frame-free manner. This is, the vision sensor (camera) is not capturing a sequence of still frames, as in conventional video and computer vision systems. In Event-Driven sensors each pixel autonomously and asynchronously decides when to send its address out. This way, the sensor output is a continuous stream of address events representing reality dynamically continuously and without constraining to frames. In this paper we present an Event-Driven Convolution Module for computing 2D convolutions on such event streams. The Convolution Module has been designed to assemble many of them for building modular and hierarchical Convolutional Neural Networks for robust shape and pose invariant object recognition. The Convolution Module has multi-kernel capability. This is, it will select the convolution kernel depending on the origin of the event. A proof-of-concept test prototype has been fabricated in a 0.35 m CMOS process and extensive experimental results are provided. The Convolution Processor has also been combined with an Event-Driven Dynamic Vision Sensor (DVS) for high-speed recognition examples. The chip can discriminate propellers rotating at 2 k revolutions per second, detect symbols on a 52 card deck when browsing all cards in 410 ms, or detect and follow the center of a phosphor oscilloscope trace rotating at 5 KHz.Unión Europea 216777 (NABAB)Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Embedding Multi-Task Address-Event- Representation Computation

    Get PDF
    Address-Event-Representation, AER, is a communication protocol that is intended to transfer neuronal spikes between bioinspired chips. There are several AER tools to help to develop and test AER based systems, which may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. Although these tools reach very high bandwidth at the AER communication level, they require the use of a personal computer to allow the higher level processing of the event information. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of an embedded multi-task AER tool, connecting and programming it for processing Address-Event information from a spiking generator.Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    An AER handshake-less modular infrastructure PCB with x8 2.5Gbps LVDS serial links

    Get PDF
    Nowadays spike-based brain processing emulation is taking off. Several EU and others worldwide projects are demonstrating this, like SpiNNaker, BrainScaleS, FACETS, or NeuroGrid. The larger the brain process emulation on silicon is, the higher the communication performance of the hosting platforms has to be. Many times the bottleneck of these system implementations is not on the performance inside a chip or a board, but in the communication between boards. This paper describes a novel modular Address-Event-Representation (AER) FPGA-based (Spartan6) infrastructure PCB (the AER-Node board) with 2.5Gbps LVDS high speed serial links over SATA cables that offers a peak performance of 32-bit 62.5Meps (Mega events per second) on board-to-board communications. The board allows back compatibility with parallel AER devices supporting up to x2 28-bit parallel data with asynchronous handshake. These boards also allow modular expansion functionality through several daughter boards. The paper is focused on describing in detail the LVDS serial interface and presenting its performance.Ministerio de Ciencia e Innovación TEC2009-10639-C04-02/01Ministerio de Economía y Competitividad TEC2012-37868-C04-02/01Junta de Andalucía TIC-6091Ministerio de Economía y Competitividad PRI-PIMCHI-2011-076

    Efficient DMA transfers management on embedded Linux PSoC for Deep-Learning gestures recognition: Using Dynamic Vision Sensor and NullHop one-layer CNN accelerator to play RoShamBo

    Get PDF
    This demonstration shows a Dynamic Vision Sensor able to capture visual motion at a speed equivalent to a highspeed camera (20k fps). The collected visual information is presented as normalized histogram to a CNN accelerator hardware, called NullHop, that is able to process a pre-trained CNN to play Roshambo against a human. The CNN designed for this purpose consist of 5 convolutional layers and a fully connected layer. The latency for processing one histogram is 8ms. NullHop is deployed on the FPGA fabric of a PSoC from Xilinx, the Zynq 7100, which is based on a dual-core ARM computer and a Kintex-7 with 444K logic cells, integrated in the same chip. ARM computer is running Linux and a specific C++ controller is running the whole demo. This controller runs at user space in order to extract the maximum throughput thanks to an efficient use of the AXIStream, based of DMA transfers. This short delay needed to process one visual histogram, allows us to average several consecutive classification outputs. Therefore, it provides the best estimation of the symbol that the user presents to the visual sensor. This output is then mapped to present the winner symbol within the 60ms latency that the brain considers acceptable before thinking that there is a trick.Ministerio de Economía y Competitividad TEC2016-77785-

    NeuroPod: a real-time neuromorphic spiking CPG applied to robotics

    Get PDF
    Initially, robots were developed with the aim of making our life easier, carrying out repetitive or dangerous tasks for humans. Although they were able to perform these tasks, the latest generation of robots are being designed to take a step further, by performing more complex tasks that have been carried out by smart animals or humans up to date. To this end, inspiration needs to be taken from biological examples. For instance, insects are able to optimally solve complex environment navigation problems, and many researchers have started to mimic how these insects behave. Recent interest in neuromorphic engineering has motivated us to present a real-time, neuromorphic, spike-based Central Pattern Generator of application in neurorobotics, using an arthropod-like robot. A Spiking Neural Network was designed and implemented on SpiNNaker. The network models a complex, online-change capable Central Pattern Generator which generates three gaits for a hexapod robot locomotion. Recon gurable hardware was used to manage both the motors of the robot and the real-time communication interface with the Spiking Neural Networks. Real-time measurements con rm the simulation results, and locomotion tests show that NeuroPod can perform the gaits without any balance loss or added delay.Ministerio de Economía y Competitividad TEC2016-77785-
    corecore