68 research outputs found
The Effect of Stand Age on Throughfall Chemistry in Spruce Stands in the Potok Dupniański Catchment in the Silesian Beskid Mountains, Southern Poland
The chemical composition of throughfall depends on the age of the Norway spruce (Picea abies Karst) stands and season of the year. The pH of throughfall decreased and the amount of hydrogen ion in throughfall deposited to the soil increased with increasing age of spruce stands, especially in the winter season. Concentrations of K+, H+, SO42−, Mn2+, and NH4+ in throughfall were higher than bulk precipitation for the whole year and K+, H+, and Mn2+ concentrations were higher in throughfall in winter and the growing season. This indicates that these ions were washed out or washed from the surface of needles and/or the bark, and that NO3−, NH4+, Ca2+, Mg2+, Fe2+, and Zn2+ were absorbed in the canopy. The effect of high nitrogen deposition, above critical loads, and an increase in the amount of sulfur and in the sum of the strong acids (S-SO42− and N-NO3−) that reached the soil with throughfall may have implications for the vitality of spruce stands, especially in older age classes. The application of Principal Component Analysis (PCA) has led to identification of five factors responsible for the data structure (“mineral dust”, “acidic emissions”, “heavy metals-dust particles”, “ammonium [NH4+]”, and “H+”). They explain more than 60% of the total variance system. The strong positive correlation between stand age class and ionic concentrations in throughfall occurs for all year and the winter period for ions within the following categories: “acidic emissions”, SO42− + NO3−; “heavy metals-dust particles”, Fe2+ + Mn2+ + Zn2+; “mineral dust”, Na+ + K+ + Ca+2 + Mg2+; “NH4+”; and “H+”. The strength of the relationship decreases in the growing period, probably due to processes occurring in the canopy (adsorption, leaching, etc.)
Soil Contamination Interpretation by the Use of Monitoring Data Analysis
The presented study deals with the interpretation of soil quality monitoring data using hierarchical cluster analysis (HCA) and principal components analysis (PCA). Both statistical methods contributed to the correct data classification and projection of the surface (0–20 cm) and subsurface (20–40 cm) soil layers of 36 sampling sites in the region of Burgas, Bulgaria. Clustering of the variables led to formation of four significant clusters corresponding to possible sources defining the soil quality like agricultural activity, industrial impact, fertilizing, etc. Two major clusters were found to explain the sampling site locations according to soil composition—one cluster for coastal and mountain sites and another—for typical rural and industrial sites. Analogous results were obtained by the use of PCA. The advantage of the latter was the opportunity to offer more quantitative interpretation of the role of identified soil quality sources by the level of explained total variance. The score plots and the dendrogram of the sampling sites indicated a relative spatial homogeneity according to geographical location and soil layer depth. The high-risk areas and pollution profiles were detected and visualized using surface maps based on Kriging algorithm
Microplastics in Commercial Fishes and By-Catch from Selected FAO Major Fishing Areas of the Southern Baltic Sea
According to recent world wide studies, microplastics (MPs) have been found in many fish species; however, the majority of research has focused only on the gastrointestinal tract, neglecting edible organs. This study aimed to assess the presence of microplastics in the non-edible (gills, digestive tract) and edible organs (liver) of three commercial fish species and twoby-catch species from the southern Baltic Sea. Fish (Clupea harengus, Gadus morhua, Platichthy sflesus, Taurulus baublis, Cyclopterus lumpus) were caught in 108 and 103 FAO Fishing Zones belonging to the Polish fishing zone. The abundanceof MPs ranged from 1 to 12 items per fish, with an average of 4.09 items. MPs were observed in different organs, such as the liver, gills, and digestive tract of all five tested species. MPs recognized as fibers were the most abundant. Other shapes of polymers found in fish organs were pellets and particles of larger plastic pieces. The dominant color of the MPs was blue, but there were also red, black, transparent, yellow, green, and white items found. According to dimensions, dominant MPs were between 0.1 and 0.5 mm in size. The chemical characterization of polymers accomplished by the use of Fourier Transform Infrared (FT-IR) Spectroscopy demonstrated the abundance of cellophane, polyamide, polyethylene, polypropylene, polyethylene terephthalate, polyvinyl propionate, polyacrylonitrile, and polyester.</jats:p
Distribution of Nine Organic UV Filters along the Shore Next to the Harbor Canals in the Middle Pomeranian Region (Northern Poland)
Spatiotemporal changes in the concentration of UV filters were investigated along the shore according to increasing distance from breakwaters, from the shoreline, as well as according to seasonality in three locations of different anthropogenic pressures, involving those from cosmetic products being released during touristic activity. Nine organic UV filters (benzophenone-1 (BP-1), benzophenone-2 (BP-2), benzophenone-3 (BP-3), octocrylene (OCR), 4-methoxy benzylidene camphor (4-MBC), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate (EHS), homosalate (HMS), and butyl methoxydibenzoylmethane (BMDM)) were determined in core sediments, and the range of determined concentrations above the limit of quantification was between 19.2 ng·kg−1 d.w. (HMS) and 539.5 μg·kg−1 d.w. (4-MBC). Unexpectedly, contrary to the level of anthropogenic pressure, the concentrations of four (BP-1, BP-2, BP-3, OCR) UV filters decreased in the following order: Darłówko > Ustka > Rowy. Higher concentrations of BP-1, BP-2, BP-3, and OCR were determined in spring than in summer and autumn. The maximal concentration of HMS and EHMC/EHS was found in the summer and in the autumn, respectively. BMDM was determined occasionally only in two samples collected in Ustka. The higher maximal concentration range of all UV filters was determined in core sediments taken from the eastern (539.5 μg·kg−1 d.w.) rather than from the western (11.3 μg·kg−1 d.w.) parts of the beaches. According to increasing distance from the breakwaters, higher concentrations of UV filters were determined in sites located up to 100 m away in all locations and seasons. Spatial variation in the concentration of UV filters was observed in profiles perpendicular to the water line. Typically, higher concentrations were determined at sites having contact with water, although incidentally, high concentrations were also noticed at sites located further into the beach. The Polish coast of the Baltic Sea is not free from organic UV filters, and expectations concerning the abundance of UV filters in a given location are far from recorded data due to the impact of hydro-technical treatments (i.e., stony and wooden breakwaters, artificial reefs, nourishment) and coastal littoral drift
Microplastics Occurrence in Two Mountainous Rivers in the Lowland Area—A Case Study of the Central Pomeranian Region, Poland
Because of the increasing worldwide awareness concerning the occurrence of microplastics (MPs) in aquatic ecosystems, our goal was to analyze for the first time the quality and abundance of MPs and assess their seasonal variation in two unique rivers flowing through the low-land area in northern Poland. Their uniqueness is due to the fact they flow through landscape parks and urbanized zones, possess mountainous characteristics, and are aquatic habitats for sea trout (Salmo trutta m. trutta) and salmon (Salmo salar). In this pioneering study, the morphological types, geometric dimensions, and color of MP particles were analyzed by the use of an optical microscope. MPs particles were detected in 62.5% of the river water samples, while the average abundance was 3.6–4.2 items per sample. In terms of general seasonality, the sum of MPs items found in investigated river water samples decreased in the following order: spring (75 items) > summer (64 items) > autumn (52 items). Neither the total MPs abundance nor any morphological MPs types were statistically different between rivers according to single seasons. The quantity of MPs present in the river water was higher downstream of the wastewater treatment plant studied, which confirms that treated sewage effluent is a key source of MPs in an aquatic environment. Among the morphological types, fragments were prevalent among granules and fibers, while their average length not exceeding 1.0 mm enabled them to be classified as small. MPs were classified into nine colors, however, the bright colors were dominating only in the case of granule. In the case of the fragments and fibers, the dominating colors were transparent, white, blue, and black. Fourier transform infrared spectroscopy was performed on a small sample of microplastics (21.0%) due to their small size. Polymers containing polyethylene, polyvinyl chloride, polypropylene, polyester, and polystyrene were identified
Application of Pattern Recognition and Computer Vision Tools to Improve the Morphological Analysis of Microplastic Items in Biological Samples
Since, in many routine analytical laboratories, a stereomicroscope coupled with a digital camera is not equipped with advanced software enabling automatic detection of features of observed objects, in the present study, a procedure of feature detection using open-source software was proposed and validated. Within the framework of applying microscopic expertise coupled with image analysis, a set of digital images of microplastic (MP) items identified in organs of fish was used to determine shape descriptors (such as length, width, item area, etc.). The edge points required to compute shape characteristics were set manually in digital images acquired by the camera coupled with a binocular, and respective values were computed via the use of built-in MotiConnect software. As an alternative, a new approach consisting of digital image thresholding, binarization, the use of connected-component labeling, and the computation of shape descriptors on a pixel level via using the functions available in an OpenCV library or self-written in C++ was proposed. Overall, 74.4% of the images were suitable for thresholding without any additional pretreatment. A significant correlation was obtained between the shape descriptors computed by the software and computed using the proposed approach. The range of correlation coefficients at a very high level of significance, according to the pair of correlated measures, was higher than 0.69. The length of fibers can be satisfactorily approximated using a value of half the length of the outer perimeter (r higher than 0.75). Compactness and circularity significantly differ for particles and fibers
Microplastics Occurrence in Two Mountainous Rivers in the Lowland Area—A Case Study of the Central Pomeranian Region, Poland
Because of the increasing worldwide awareness concerning the occurrence of microplastics (MPs) in aquatic ecosystems, our goal was to analyze for the first time the quality and abundance of MPs and assess their seasonal variation in two unique rivers flowing through the low-land area in northern Poland. Their uniqueness is due to the fact they flow through landscape parks and urbanized zones, possess mountainous characteristics, and are aquatic habitats for sea trout (Salmo trutta m. trutta) and salmon (Salmo salar). In this pioneering study, the morphological types, geometric dimensions, and color of MP particles were analyzed by the use of an optical microscope. MPs particles were detected in 62.5% of the river water samples, while the average abundance was 3.6–4.2 items per sample. In terms of general seasonality, the sum of MPs items found in investigated river water samples decreased in the following order: spring (75 items) > summer (64 items) > autumn (52 items). Neither the total MPs abundance nor any morphological MPs types were statistically different between rivers according to single seasons. The quantity of MPs present in the river water was higher downstream of the wastewater treatment plant studied, which confirms that treated sewage effluent is a key source of MPs in an aquatic environment. Among the morphological types, fragments were prevalent among granules and fibers, while their average length not exceeding 1.0 mm enabled them to be classified as small. MPs were classified into nine colors, however, the bright colors were dominating only in the case of granule. In the case of the fragments and fibers, the dominating colors were transparent, white, blue, and black. Fourier transform infrared spectroscopy was performed on a small sample of microplastics (21.0%) due to their small size. Polymers containing polyethylene, polyvinyl chloride, polypropylene, polyester, and polystyrene were identified.</jats:p
- …
