28 research outputs found

    Radiative corrections to the lightest KK states in the T^2/(Z_2\times Z_2') orbifold

    Get PDF
    We study radiative corrections localized in the fixed points of the orbifold for the field theory in six dimensions with two dimensions compactified on the T2/(Z2×Z2)T_2/(Z_2\times Z_2') orbifold in a specific realistic model for low energy physics that solves the proton decay and neutrino mass problem. We calculate corrections to the masses of the lightest stable KK modes, which could be the candidates for the dark matter.Comment: 14 pages, 2 figure

    Model-Independent Bounds on a Light Higgs

    Get PDF
    We present up-to-date constraints on a generic Higgs parameter space. An accurate assessment of these exclusions must take into account statistical, and potentially signal, fluctuations in the data currently taken at the LHC. For this, we have constructed a straightforward statistical method for making full use of the data that is publicly available. We show that, using the expected and observed exclusions which are quoted for each search channel, we can fully reconstruct likelihood profiles under very reasonable and simple assumptions. Even working with this somewhat limited information, we show that our method is sufficiently accurate to warrant its study and advocate its use over more naive prescriptions. Using this method, we can begin to narrow in on the remaining viable parameter space for a Higgs-like scalar state, and to ascertain the nature of any hints of new physics---Higgs or otherwise---appearing in the data.Comment: 32 pages, 10 figures; v3: correction made to basis of four-derivative operators in the effective Lagrangian, references adde

    Same sign di-lepton candles of the composite gluons

    Get PDF
    Composite Higgs models, where the Higgs boson is identified with the pseudo-Nambu-Goldstone-Boson (pNGB) of a strong sector, typically have light composite fermions (top partners) to account for a light Higgs. This type of models, generically also predicts the existence of heavy vector fields (composite gluons) which appear as an octet of QCD. These composite gluons become very broad resonances once phase-space allows them to decay into two composite fermions. This makes their traditional experimental searches, which are designed to look for narrow resonances, quite ineffective. In this paper, we as an alternative, propose to utilize the impact of composite gluons on the production of top partners to constrain their parameter space. We place constraints on the parameters of the composite resonances using the 8 TeV LHC data and also assess the reach of the 14 TeV LHC. We find that the high luminosity LHC will be able to probe composite gluon masses up to similar to 6 TeV, even in the broad resonance regime

    Probing Higgs couplings with high p T Higgs production

    Get PDF
    Possible extensions of the Standard Model predict modifications of the Higgs couplings to gluons and to the SM top quark. The values of these two couplings can, in general, be independent. We discuss a way to measure these interactions by studying the Higgs production at high p T within an effective field theory formalism. We also propose an observable r \ub1 with reduced theoretical errors and suggest its experimental interpretation. \ua9 2014 SISSA

    Determining Higgs couplings with a model-independent analysis of h ->gamma gamma

    Full text link
    Discovering a Higgs boson at the LHC will address a major outstanding issue in particle physics but will also raise many new questions. A concerted effort to determine the couplings of this new state to other Standard Model fields will be of critical importance. Precise knowledge of these couplings can serve as a powerful probe of new physics, and will be needed in attempts to accommodate such a new boson within specific models. In this paper, we present a method for constraining these couplings in a model-independent way, focusing primarily on an exclusive analysis of the gamma gamma final state. We demonstrate the discriminating power of fully exclusive analyses, and discuss ways in which information can be shared between experimentalists and theorists in order to facilitate collaboration in the task of establishing the true origins of any new physics discovered at the LHC.Comment: 24 pages, 4 figure

    Warped dipole completed, with a tower of Higgs bosons

    Get PDF
    In the context of warped extra-dimensional models which address both the Planck-weak- and flavor-hierarchies of the Standard Model (SM), it has been argued that certain observables can be calculated within the 5D effective field theory only with the Higgs field propagating in the bulk of the extra dimension, just like other SM fields. The related studies also suggested an interesting form of decoupling of the heavy Kaluza-Klein (KK) fermion states in the warped 5D SM in the limit where the profile of the SM Higgs approaches the IR brane. We demonstrate that a similar phenomenon occurs when we include the mandatory KK excitations of the SM Higgs in loop diagrams giving dipole operators for SM fermions, where the earlier work only considered the SM Higgs (zero mode). In particular, in the limit of a quasi IR-localized SM Higgs, the effect from summing over KK Higgs modes is unsuppressed (yet finite), in contrast to the naive expectation that KK Higgs modes decouple as their masses become large. In this case, a wide range of KK Higgs modes have quasi-degenerate masses and enhanced couplings to fermions relative to those of the SM Higgs, which contribute to the above remarkable result. In addition, we find that the total contribution from KK Higgs modes in general can be comparable to that from the SM Higgs alone. It is also interesting that KK Higgs couplings to KK fermions of the same chirality as the corresponding SM modes have an unsuppressed overall contribution, in contrast to the result from the earlier studies involving the SM Higgs. Our studies suggest that KK Higgs bosons are generally an indispensable part of the warped 5D SM, and their phenomenology such as signals at the LHC are worth further investigation

    On the Flavor Structure of Natural Composite Higgs Models & Top Flavor Violation

    Get PDF
    Abstract: We explore the up flavor structure of composite pseudo Nambu-Goldstone-boson Higgs models, where we focus on the flavor anarchic minimal SO(5) case. We identify the different sources of flavor violation in this framework and emphasise the differences from the anarchic Randall-Sundrum scenario. In particular, the fact that the flavor symmetry does not commute with the symmetries that stabilize the Higgs potential may constrain the flavor structure of the theory. In addition, we consider the interplay between the fine tuning of the model and flavor violation. We find that generically the tuning of this class of models is worsen in the anarchic case due to the contributions from the additional fermion resonances. We show that, even in the presence of custodial symmetry, large top flavor violating rate are naturally expected. In particular, t \u2192 cZ branching ratio of order of 10 125 is generic for this class of models. Thus, this framework can be tested in the next run of the LHC as well as in other future colliders. We also find that the top flavor violation is weakly correlated with the increase amount of fine tuning. Finally, other related flavor violation effects, such as t \u2192 ch and in the D system, are found to be too small to be observed by the current and near future colliders. \ua9 2014, The Author(s)

    Erratum:Towards a muon collider

    Get PDF
    LPT

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum: Towards a muon collider

    Get PDF
    corecore