17,915 research outputs found
Performance of the modified Becke-Johnson potential
Very recently, in the 2011 version of the Wien2K code, the long standing
shortcome of the codes based on Density Functional Theory, namely, its
impossibility to account for the experimental band gap value of semiconductors,
was overcome. The novelty is the introduction of a new exchange and correlation
potential, the modified Becke-Johnson potential (mBJLDA). In this paper, we
report our detailed analysis of this recent work. We calculated using this
code, the band structure of forty one semiconductors and found an important
improvement in the overall agreement with experiment as Tran and Blaha [{\em
Phys. Rev. Lett.} 102, 226401 (2009)] did before for a more reduced set of
semiconductors. We find, nevertheless, within this enhanced set, that the
deviation from the experimental gap value can reach even much more than 20%, in
some cases. Furthermore, since there is no exchange and correlation energy term
from which the mBJLDA potential can be deduced, a direct optimization procedure
to get the lattice parameter in a consistent way is not possible as in the
usual theory. These authors suggest that a LDA or a GGA optimization procedure
is used previous to a band structure calculation and the resulting lattice
parameter introduced into the 2011 code. This choice is important since small
percentage differences in the lattice parameter can give rise to quite higher
percentage deviations from experiment in the predicted band gap value.Comment: 10 pages, 2 figures, 5 Table
Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation
We describe a room-temperature alkali-metal atomic magnetometer for detection
of small, high frequency magnetic fields. The magnetometer operates by
detecting optical rotation due to the precession of an aligned ground state in
the presence of a small oscillating magnetic field. The resonance frequency of
the magnetometer can be adjusted to any desired value by tuning the bias
magnetic field. We demonstrate a sensitivity of in a 3.5 cm diameter, paraffin coated cell. Based
on detection at the photon shot-noise limit, we project a sensitivity of
.Comment: 6 pages, 6 figure
The connected components of the space of Alexandrov surfaces
Denote by the set of all compact Alexandrov surfaces
with curvature bounded below by without boundary, endowed with the
topology induced by the Gromov-Hausdorff metric. We determine the connected
components of and of its closure
Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase
Magnetic and magnetoelastic properties of terbium titanate pyrochlore in
paramagnetic phase are simulated. The magnetic field and temperature
dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single
crystals and polycrystalline samples are calculated in the framework of
exchange charge model of crystal field theory and a mean field approximation.
The set of electron-deformation coupling constants has been determined.
Variations of elastic constants with temperature and applied magnetic field are
discussed. Additional strong softening of the crystal lattice at liquid helium
temperatures in the magnetic field directed along the rhombic symmetry axis is
predicted.Comment: 13 pages, 4 figures, 2 table
The gravity-related decoherence master equation from hybrid dynamics
Canonical coupling between classical and quantum systems cannot result in
reversible equations, rather it leads to irreversible master equations.
Coupling of quantized non-relativistic matter to gravity is illustrated by a
simplistic example. The heuristic derivation yields the theory of
gravity-related decoherence proposed longtime ago by Penrose and the author.Comment: 9pp, extended version of invited talk at Fifth International Workshop
DICE2010 (Castello Pasquini/Castiglioncello/Tuscany, Sept. 13-17, 2010
- …
