630 research outputs found
Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions
We give a concise summary of the impressive recent development unifying a
number of different fundamental subjects. The quiver Nekrasov functions
(generalized hypergeometric series) form a full basis for all conformal blocks
of the Virasoro algebra and are sufficient to provide the same for some
(special) conformal blocks of W-algebras. They can be described in terms of
Seiberg-Witten theory, with the SW differential given by the 1-point resolvent
in the DV phase of the quiver (discrete or conformal) matrix model
(\beta-ensemble), dS = ydz + O(\epsilon^2) = \sum_p \epsilon^{2p}
\rho_\beta^{(p|1)}(z), where \epsilon and \beta are related to the LNS
parameters \epsilon_1 and \epsilon_2. This provides explicit formulas for
conformal blocks in terms of analytically continued contour integrals and
resolves the old puzzle of the free-field description of generic conformal
blocks through the Dotsenko-Fateev integrals. Most important, this completes
the GKMMM description of SW theory in terms of integrability theory with the
help of exact BS integrals, and provides an extended manifestation of the basic
principle which states that the effective actions are the tau-functions of
integrable hierarchies.Comment: 14 page
Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe
In three spacetime dimensions, general relativity drastically simplifies,
becoming a ``topological'' theory with no propagating local degrees of freedom.
Nevertheless, many of the difficult conceptual problems of quantizing gravity
are still present. In this review, I summarize the rather large body of work
that has gone towards quantizing (2+1)-dimensional vacuum gravity in the
setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms,
additions, missing references welcome; v2: minor changes, added reference
Influence of the Temperature and the Genotype of the HSP90AA1 Gene over Sperm Chromatin Stability in Manchega Rams
The present study addresses the effect of heat stress on males' reproduction ability. For that, we have evaluated the sperm DNA fragmentation (DFI) by SCSA of ejaculates incubated at 37°C during 0, 24 and 48 hours after its collection, as a way to mimic the temperature circumstances to which spermatozoa will be subject to in the ewe uterus. The effects of temperature and temperature-humidity index (THI) from day 60 prior collection to the date of semen collection on DFI were examined. To better understand the causes determining the sensitivity of spermatozoa to heat, this study was conducted in 60 males with alternative genotypes for the SNP G/C−660 of the HSP90AA1 promoter, which encode for the Hsp90α protein. The Hsp90α protein predominates in the brain and testis, and its role in spermatogenesis has been described in several species. Ridge regression analyses showed that days 29 to 35 and 7 to 14 before sperm collection (bsc) were the most critical regarding the effect of heat stress over DFI values. Mixed model analyses revealed that DFI increases over a threshold of 30°C for maximum temperature and 22 for THI at days 29 to 35 and 7 to 14 bsc only in animals carrying the GG−660 genotype. The period 29–35 bsc coincide with the meiosis I process for which the effect of the Hsp90α has been described in mice. The period 7–14 bsc may correspond with later stages of the meiosis II and early stages of epididymal maturation in which the replacement of histones by protamines occurs. Because of GG−660 genotype has been associated to lower levels of HSP90AA1 expression, suboptimal amounts of HSP90AA1 mRNA in GG−660 animals under heat stress conditions make spermatozoa DNA more susceptible to be fragmented. Thus, selecting against the GG−660 genotype could decrease the DNA fragmentation and spermatozoa thermal susceptibility in the heat season, and its putative subsequent fertility gainsPublishe
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Measurement of Trilinear Gauge Couplings in Collisions at 161 GeV and 172 GeV
Trilinear gauge boson couplings are measured using data taken by DELPHI at 161~GeV and 172~GeV. Values for couplings () are determined from a study of the reactions \eeWW\ and \eeWev, using differential distributions from the final state in which one decays hadronically and the other leptonically, and total cross-section data from other channels. Limits are also derived on neutral couplings from an analysis of the reaction \eegi
First record of the freshwater copepod Eucyclops titicacae Kiefer, 1957, new rank (Copepoda, Cyclopoida) in Colombia
The Molecular Chaperone Hsp90α Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse
The molecular chaperone Hsp90 has been found to be essential for viability in all tested eukaryotes, from the budding yeast to Drosophila. In mammals, two genes encode the two highly similar and functionally largely redundant isoforms Hsp90α and Hsp90β. Although they are co-expressed in most if not all cells, their relative levels vary between tissues and during development. Since mouse embryos lacking Hsp90β die at implantation, and despite the fact that Hsp90 inhibitors being tested as anti-cancer agents are relatively well tolerated, the organismic functions of Hsp90 in mammals remain largely unknown. We have generated mouse lines carrying gene trap insertions in the Hsp90α gene to investigate the global functions of this isoform. Surprisingly, mice without Hsp90α are apparently normal, with one major exception. Mutant male mice, whose Hsp90β levels are unchanged, are sterile because of a complete failure to produce sperm. While the development of the male reproductive system appears to be normal, spermatogenesis arrests specifically at the pachytene stage of meiosis I. Over time, the number of spermatocytes and the levels of the meiotic regulators and Hsp90 interactors Hsp70-2, NASP and Cdc2 are reduced. We speculate that Hsp90α may be required to maintain and to activate these regulators and/or to disassemble the synaptonemal complex that holds homologous chromosomes together. The link between fertility and Hsp90 is further supported by our finding that an Hsp90 inhibitor that can cross the blood-testis barrier can partially phenocopy the genetic defects
Cardiac Peroxisome Proliferator-Activated Receptor-γ Expression is Modulated by Oxidative Stress in Acutely Infrasound-Exposed Cardiomyocytes
- …
