1,501 research outputs found

    Compound radiointerferometer with independent heterodynes for the investigation of emission sources radioimages

    Get PDF
    Compound radio interferometer with independent heterodynes to investigate radio emission source

    Solving the Tower of Hanoi with Random Moves

    Full text link
    We prove the exact formulae for the expected number of moves to solve several variants of the Tower of Hanoi puzzle with 3 pegs and n disks, when each move is chosen uniformly randomly from the set of all valid moves. We further present an alternative proof for one of the formulae that couples a theorem about expected commute times of random walks on graphs with the delta-to-wye transformation used in the analysis of three-phase AC systems for electrical power distribution

    On pairwise distances and median score of three genomes under DCJ

    Get PDF
    In comparative genomics, the rearrangement distance between two genomes (equal the minimal number of genome rearrangements required to transform them into a single genome) is often used for measuring their evolutionary remoteness. Generalization of this measure to three genomes is known as the median score (while a resulting genome is called median genome). In contrast to the rearrangement distance between two genomes which can be computed in linear time, computing the median score for three genomes is NP-hard. This inspires a quest for simpler and faster approximations for the median score, the most natural of which appears to be the halved sum of pairwise distances which in fact represents a lower bound for the median score. In this work, we study relationship and interplay of pairwise distances between three genomes and their median score under the model of Double-Cut-and-Join (DCJ) rearrangements. Most remarkably we show that while a rearrangement may change the sum of pairwise distances by at most 2 (and thus change the lower bound by at most 1), even the most "powerful" rearrangements in this respect that increase the lower bound by 1 (by moving one genome farther away from each of the other two genomes), which we call strong, do not necessarily affect the median score. This observation implies that the two measures are not as well-correlated as one's intuition may suggest. We further prove that the median score attains the lower bound exactly on the triples of genomes that can be obtained from a single genome with strong rearrangements. While the sum of pairwise distances with the factor 2/3 represents an upper bound for the median score, its tightness remains unclear. Nonetheless, we show that the difference of the median score and its lower bound is not bounded by a constant.Comment: Proceedings of the 10-th Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB-CG), 2012. (to appear

    Optical Hyperlens: Far-field imaging beyond the diffraction limit

    Get PDF
    We propose an approach to far-field optical imaging beyond the diffraction limit. The proposed system allows image magnification, is robust with respect to material losses and can be fabricated by adapting existing metamaterial technologies in a cylindrical geometry

    A Computational Method for the Rate Estimation of Evolutionary Transpositions

    Full text link
    Genome rearrangements are evolutionary events that shuffle genomic architectures. Most frequent genome rearrangements are reversals, translocations, fusions, and fissions. While there are some more complex genome rearrangements such as transpositions, they are rarely observed and believed to constitute only a small fraction of genome rearrangements happening in the course of evolution. The analysis of transpositions is further obfuscated by intractability of the underlying computational problems. We propose a computational method for estimating the rate of transpositions in evolutionary scenarios between genomes. We applied our method to a set of mammalian genomes and estimated the transpositions rate in mammalian evolution to be around 0.26.Comment: Proceedings of the 3rd International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO), 2015. (to appear
    corecore