94 research outputs found

    Investigating Efficiency of Vector-Valued Intensity Measures in Seismic Demand Assessment of Concrete Dams

    Get PDF
    The efficiency of vector-valued intensity measures for predicting the seismic demand in gravity dams is investigated. The Folsom gravity dam-reservoir coupled system is selected and numerically analyzed under a set of two-hundred actual ground motions. First, the well-defined scalar IMs are separately investigated, and then they are coupled to form two-parameter vector IMs. After that, IMs consisting of spectral acceleration at the first-mode natural period of the dam-reservoir system along with a measure of the spectral shape (the ratio of spectral acceleration at a second period to the first-mode spectral acceleration value) are considered. It is attempted to determine the optimal second period by categorizing the spectral acceleration at the first-mode period of vibration. The efficiency of the proposed vector IMs is compared with scalar ones considering various structural responses as EDPs. Finally, the probabilistic seismic behavior of the dam is investigated by calculating its fragility curves employing scalar and vector IMs considering the effect of zero response values

    Buckling behavior of non-retrofitted and FRP-retrofitted steel CHS T-joints

    Get PDF
    This paper aims to investigate the buckling behavior of circular hollow section (CHS) Tjoints in retrofitted and non-retrofitted states under axial brace compressive loading. For this purpose, two types of analysis are carried out. The first one is evaluating the critical buckling load in various tubular joints, and the other one is investigating the post-buckling behavior after each buckling mode. More than 180 CHS T-joints with various normalized geometric properties were numerically modeled in non-retrofitted state to compute their governing buckling mode, i.e., chord ovalization, brace local, or global buckling. Then three joints with different buckling modes were selected to be retrofitted by fiber-reinforced polymer (FRP) patches to illustrate the improving effect of the FRP wrapping on the post-buckling performance of the retrofitted joints. In addition, FRP composite failures were investigated. The results indicate that the FRP retrofitting is able to prevent the brace local buckling, and that matrix failure is the most common composite failure in the retrofitted joints

    Numerical analysis of axial cyclic behavior of FRP retrofitted CHS joints

    Get PDF
    This paper aims to numerically investigate the cyclic behavior of retrofitted and non-retrofitted circular hollow section (CHS) T-joints under axial loading. Different joints with varying ratios of brace to chord radius are studied. The effects of welding process on buckling instability of the joints in compression and the plastic failure in tension are considered. The finite element method is employed for numerical analysis, and the SAC protocol is considered as cyclic loading scheme. The CHS joints are retrofitted with different numbers of Fiber Reinforced Polymer (FRP) layers with varying orientation. The results show that the welding process significantly increases the plastic failure potential. The chord ovalization is the dominant common buckling mode under the compression load. However, it is possible to increase the energy dissipation of the joints by utilizing FRP composite through changing the buckling mode to the brace overall buckling

    Seismic behaviour of prestressed and normal reinforcement of communication tower with ultra-high performance concrete, high strength concrete and normal concrete materials

    Get PDF
    Nowadays, advances in telecommunications and broadcasting have led to the implementation of communication towers for installing network equipment. These towers are designed to go as high as possible in order to cover large area and avoid obstructions. However, there exist many challenges faced by engineers in relation to design of the tall and slender structures such as the complexity configuration of the structure. The nonlinear dynamic analysis is the only method that describes the actual behaviour of a structure during earthquake. Therefore, this study aims to investigate the behaviour of ultra-high performance concrete (UHPFC), high-strength concrete (HSC) and normal concrete communication tower with 30 m height located in Malaysia under seismic excitation. Also, to provide strength, stiffness and stability for the slender structures due to their sensitivity to dynamic load such as earthquake and vibration forces. For this propose, the finite element model of the tower is developed and time history analysis of communication tower under seismic load was conducted. In addition, the effect of using prestress instead of conventional reinforcement was investigated. The result indicated that prestressing of tower had lesser effect on the lateral displacement of tower under earthquake excitation. Although, the tower with UHPFC and HSC material shows lower lateral peak displacement against earthquake load compared to the normal concrete, which led to the increase in the use of these materials in lateral stiffness of the tower structure

    A new dynamic procedure for evaluation of steel storage tanks under multidirectional seismic excitations

    Full text link

    Frequency Domain Analysis of Submerged Tower-Dam Dynamic Interaction

    Full text link

    Earthquake response of solitary slender freestanding intake towers

    Full text link

    Seismic response sensitivity analysis of intake towers interacting with dam, reservoir and foundation

    Get PDF
    In this paper, parameter sensitivity analysis of the dynamic response of cylindrical intake towers interacting with the concrete dam, foundation, internal and surrounding water is performed. The tower is modelled and verified using three-dimensional finite elements according to the Eulerian-Lagrangian approach in the time domain. In order to carry out a parametric study, the Taguchi optimization method is employed to distinguish the most influential parameters. Thus, the iteration algorithm and number of numerical tests are designed. The models are tested under longitudinal horizontal excitation of selected reference accelerograms for either hard soil or hard rock. The evaluation of the results indicated that the two parameters, i.e. tower’s slender ratio, and the surrounding water depth are the most effective factors on both intake tower’s top drift and the base shear coefficient under seismic excitations on hard soil. It is observed that the elasticity modulus of the foundation is another influential factor in the seismic response, as the tower’s drift increases with the foundation’s flexibility. Furthermore, the effect of dam interaction on the tower drift reduces as the distance from the dam increases and stays relatively constant for any distance higher than twice the tower’s height. Interesting to note that the intake tower did not show notable sensitivity to the reference hard rock ground motion compared with that of the hard soil ground motion
    corecore