9 research outputs found
Thyroid Hormone Signaling in Embryonic Stem Cells: Crosstalk with the Retinoic Acid Pathway
While the role of thyroid hormones (THs) during fetal and postnatal life is well-established, their role at preimplantation and during blastocyst development remains unclear. In this study, we used an embryonic stem cell line isolated from rat (RESC) to study the effects of THs and retinoic acid (RA) on early embryonic development during the pre-implantation stage. The results showed that THs play an important role in the differentiation/maturation processes of cells obtained from embryoid bodies (EB), with thyroid hormone nuclear receptors (TR) (TRα and TRβ), metabolic enzymes (deiodinases 1, 2, 3) and membrane transporters (Monocarboxylate transporters -MCT- 8 and 10) being expressed throughout in vitro differentiation until the Embryoid body (EB) stage. Moreover, thyroid hormone receptor antagonist TR (1-850) impaired RA-induced neuroectodermal lineage specification. This effect was significantly higher when cells were treated with retinoic acid (RA) to induce neuroectodermal lineage, studied through the gene and protein expression of nestin, an undifferentiated progenitor marker from the neuroectoderm lineage, as established by nestin mRNA and protein regulation. These results demonstrate the contribution of the two nuclear receptors, TR and RA, to the process of neuroectoderm maturation of the in vitro model embryonic stem cells obtained from rat.</jats:p
A Novel Three-Dimensional Culture Device Favors a Myelinating Morphology of Neural Stem Cell-Derived Oligodendrocytes
The complexity of the central nervous system (CNS) requires researchers to consider all the variables linked to the interaction between the different cell inhabitants. On this basis, any in vitro study of the physiological and pathological processes regarding the CNS should consider the balance between the standardization of the assay and the complexity of the cellular system which mimics the in vivo microenvironment. One of the main structural and functional components of the CNS is the oligodendrocyte precursor cell (OPC), responsible for developmental myelination and myelin turnover and repair during adulthood following differentiation into mature oligodendrocytes. In the present brief research report, we describe a 3D culture tool (VITVO) based on an inert and biocompatible synthetic polymer material scaffold, functionalized with laminin coating, and tested as a new culture microenvironment for neural stem/precursor cell (NSPC) differentiation compared to standard 2D cultures. NSPCs spontaneously differentiate in the three neural lineages (neurons, astrocytes and OPCs), identified by specific markers, along the fibers in the 3D structure. Analysis of the mRNA levels for lineage differentiation markers reveals a higher expression compared to those seeded on a 2D surface, suggesting an acceleration of the differentiation process. We then focused on the oligodendroglial lineage, showing that in VITVO, mature oligodendrocytes exhibit a myelinating morphology, proven by 3D image elaboration, linked to a higher expression of mature oligodendrocyte markers. This preliminary study on an innovative 3D culture system is the first robust step in producing new microenvironment-based strategies to investigate in vitro OPC and oligodendrocyte biology.</jats:p
Thyroid Hormone Signaling in Embryonic Stem Cells: Crosstalk with the Retinoic Acid Pathway
While the role of thyroid hormones (THs) during fetal and postnatal life is well-established, their role at preimplantation and during blastocyst development remains unclear. In this study, we used an embryonic stem cell line isolated from rat (RESC) to study the effects of THs and retinoic acid (RA) on early embryonic development during the pre-implantation stage. The results showed that THs play an important role in the differentiation/maturation processes of cells obtained from embryoid bodies (EB), with thyroid hormone nuclear receptors (TR) (TR\u3b1 and TR\u3b2), metabolic enzymes (deiodinases 1, 2, 3) and membrane transporters (Monocarboxylate transporters -MCT- 8 and 10) being expressed throughout in vitro differentiation until the Embryoid body (EB) stage. Moreover, thyroid hormone receptor antagonist TR (1-850) impaired RA-induced neuroectodermal lineage specification. This effect was significantly higher when cells were treated with retinoic acid (RA) to induce neuroectodermal lineage, studied through the gene and protein expression of nestin, an undifferentiated progenitor marker from the neuroectoderm lineage, as established by nestin mRNA and protein regulation. These results demonstrate the contribution of the two nuclear receptors, TR and RA, to the process of neuroectoderm maturation of the in vitro model embryonic stem cells obtained from rat
Poly(l-lactic acid) Scaffold Releasing an α4β1 Integrin Agonist Promotes Nonfibrotic Skin Wound Healing in Diabetic Mice
Skin wound healing is a highly complex process that continues to represent a major medical problem, due to chronic nonhealing wounds in several classes of patients and to possible fibrotic complications, which compromise the function of the dermis. Integrins are transmembrane receptors that play key roles in this process and that offer a recognized druggable target. Our group recently synthesized GM18, a specific agonist for alpha 4 beta 1, an integrin that plays a role in skin immunity and in the migration of neutrophils, also regulating the differentiated state of fibroblasts. GM18 can be combined with poly(L-lactic acid) (PLLA) nanofibers to provide a controlled release of this agonist, resulting in a medication particularly suitable for skin wounds. In this study, we first optimized a GM18-PLLA nanofiber combination with a 7-day sustained release for use as skin wound medication. When tested in an experimental pressure ulcer in diabetic mice, a model for chronic nonhealing wounds, both soluble and GM18-PLLA formulations accelerated wound healing, as well as regulated extracellular matrix synthesis toward a nonfibrotic molecular signature. In vitro experiments using the adhesion test showed fibroblasts to be a principal GM18 cellular target, which we then used as an in vitro model to explore possible mechanisms of GM18 action. Our results suggest that the observed antifibrotic behavior of GM18 may exert a dual action on fibroblasts at the alpha 4 beta 1 binding site and that GM18 may prevent profibrotic EDA-fibronectin-alpha 4 beta 1 binding and activate outside-in signaling of the ERK1/2 pathways, a critical component of the wound healing process
Peptide Mediated Adhesion to Beta-Lactam Ring of Equine Mesenchymal Stem Cells: A Pilot Study
Regenerative medicine applied to skin lesions is a field in constant improvement. The use of biomaterials with integrin agonists could promote cell adhesion increasing tissue repair processes. The aim of this pilot study was to analyze the effect of an α4β1 integrin agonist on cell adhesion of equine adipose tissue (AT) and Wharton’s jelly (WJ) derived MSCs and to investigate their adhesion ability to GM18 incorporated poly L-lactic acid (PLLA) scaffolds. Adhesion assays were performed after culturing AT- and WJ-MSCs with GM18 coating or soluble GM18. Cell adhesion on GM18 containing PLLA scaffolds after 20 min co-incubation was assessed by HCS. Soluble GM18 affects the adhesion of equine AT- and WJ-MSCs, even if its effect is variable between donors. Adhesion to PLLA scaffolds containing GM18 is not significantly influenced by GM18 for AT-MSCs after 20 min or 24 h of culture and for WJ-MSCs after 20 min, but increased cell adhesion by 15% GM18 after 24 h. In conclusion, the α4β1 integrin agonist GM18 affects equine AT- and WJ-MSCs adhesion ability with a donor-related variability. These preliminary results represent a first step in the study of equine MSCs adhesion to PLLA scaffolds containing GM18, suggesting that WJ-MSCs might be more suitable than AT-MSCs. However, the results need to be confirmed by increasing the number of samples before drawing definite conclusions
Peptide Mediated Adhesion to Beta-Lactam Ring of Equine Mesenchymal Stem Cells: A Pilot Study
Regenerative medicine applied to skin lesions is a field in constant improvement. The use of biomaterials with integrin agonists could promote cell adhesion increasing tissue repair processes. The aim of this pilot study was to analyze the effect of an α4β1 integrin agonist on cell adhesion of equine adipose tissue (AT) and Wharton’s jelly (WJ) derived MSCs and to investigate their adhesion ability to GM18 incorporated poly L-lactic acid (PLLA) scaffolds. Adhesion assays were performed after culturing AT- and WJ-MSCs with GM18 coating or soluble GM18. Cell adhesion on GM18 containing PLLA scaffolds after 20 min co-incubation was assessed by HCS. Soluble GM18 affects the adhesion of equine AT- and WJ-MSCs, even if its effect is variable between donors. Adhesion to PLLA scaffolds containing GM18 is not significantly influenced by GM18 for AT-MSCs after 20 min or 24 h of culture and for WJ-MSCs after 20 min, but increased cell adhesion by 15% GM18 after 24 h. In conclusion, the α4β1 integrin agonist GM18 affects equine AT- and WJ-MSCs adhesion ability with a donor-related variability. These preliminary results represent a first step in the study of equine MSCs adhesion to PLLA scaffolds containing GM18, suggesting that WJ-MSCs might be more suitable than AT-MSCs. However, the results need to be confirmed by increasing the number of samples before drawing definite conclusions.</jats:p
Poly(<scp>l</scp>-lactic acid) Scaffold Releasing an α<sub>4</sub>β<sub>1</sub> Integrin Agonist Promotes Nonfibrotic Skin Wound Healing in Diabetic Mice
Poly(l‑lactic acid) Scaffold Releasing an α<sub>4</sub>β<sub>1</sub> Integrin Agonist Promotes Nonfibrotic Skin Wound Healing in Diabetic Mice
Skin
wound healing is a highly complex process that continues to
represent a major medical problem, due to chronic nonhealing wounds
in several classes of patients and to possible fibrotic complications,
which compromise the function of the dermis. Integrins are transmembrane
receptors that play key roles in this process and that offer a recognized
druggable target. Our group recently synthesized GM18, a specific
agonist for α4β1, an integrin that plays a role in skin
immunity and in the migration of neutrophils, also regulating the
differentiated state of fibroblasts. GM18 can be combined with poly(l-lactic acid) (PLLA) nanofibers to provide a controlled release
of this agonist, resulting in a medication particularly suitable for
skin wounds. In this study, we first optimized a GM18-PLLA nanofiber
combination with a 7-day sustained release for use as skin wound medication.
When tested in an experimental pressure ulcer in diabetic mice, a
model for chronic nonhealing wounds, both soluble and GM18-PLLA formulations
accelerated wound healing, as well as regulated extracellular matrix
synthesis toward a nonfibrotic molecular signature. In vitro experiments
using the adhesion test showed fibroblasts to be a principal GM18
cellular target, which we then used as an in vitro model to explore
possible mechanisms of GM18 action. Our results suggest that the observed
antifibrotic behavior of GM18 may exert a dual action on fibroblasts
at the α4β1 binding site and that GM18 may prevent profibrotic
EDA-fibronectin-α4β1 binding and activate outside-in signaling
of the ERK1/2 pathways, a critical component of the wound healing
process
