589 research outputs found
THE INFLUENCE OF ADVERTISING ON THE DEMAND FORECASTING
This paper deals with the notion of approximate probabilistic bisimulation (APB) relation for discrete-time labeled Markov Chains (LMC). In order to provide a quantified upper bound on a metric over probabilistic realizations for LMC, we exploit the structure and properties of the APB and leverage the mathematical framework of Markov set- Chains. Based on this bound, the article proves that the existence of an APB implies the preservation of robust PCTL formulae, which are formulae that allow being properly relaxed or strengthened, according to the underlying APB. This leads to a notion of robustness for probabilistic model checking. Copyright 2012 ACM
Certified Reinforcement Learning with Logic Guidance
This paper proposes the first model-free Reinforcement Learning (RL)
framework to synthesise policies for unknown, and continuous-state Markov
Decision Processes (MDPs), such that a given linear temporal property is
satisfied. We convert the given property into a Limit Deterministic Buchi
Automaton (LDBA), namely a finite-state machine expressing the property.
Exploiting the structure of the LDBA, we shape a synchronous reward function
on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces
that probabilistically satisfy the linear temporal property. This probability
(certificate) is also calculated in parallel with policy learning when the
state space of the MDP is finite: as such, the RL algorithm produces a policy
that is certified with respect to the property. Under the assumption of finite
state space, theoretical guarantees are provided on the convergence of the RL
algorithm to an optimal policy, maximising the above probability. We also show
that our method produces ''best available'' control policies when the logical
property cannot be satisfied. In the general case of a continuous state space,
we propose a neural network architecture for RL and we empirically show that
the algorithm finds satisfying policies, if there exist such policies. The
performance of the proposed framework is evaluated via a set of numerical
examples and benchmarks, where we observe an improvement of one order of
magnitude in the number of iterations required for the policy synthesis,
compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782
Sampling-based Approximations with Quantitative Performance for the Probabilistic Reach-Avoid Problem over General Markov Processes
This article deals with stochastic processes endowed with the Markov
(memoryless) property and evolving over general (uncountable) state spaces. The
models further depend on a non-deterministic quantity in the form of a control
input, which can be selected to affect the probabilistic dynamics. We address
the computation of maximal reach-avoid specifications, together with the
synthesis of the corresponding optimal controllers. The reach-avoid
specification deals with assessing the likelihood that any finite-horizon
trajectory of the model enters a given goal set, while avoiding a given set of
undesired states. This article newly provides an approximate computational
scheme for the reach-avoid specification based on the Fitted Value Iteration
algorithm, which hinges on random sample extractions, and gives a-priori
computable formal probabilistic bounds on the error made by the approximation
algorithm: as such, the output of the numerical scheme is quantitatively
assessed and thus meaningful for safety-critical applications. Furthermore, we
provide tighter probabilistic error bounds that are sample-based. The overall
computational scheme is put in relationship with alternative approximation
algorithms in the literature, and finally its performance is practically
assessed over a benchmark case study
Symbolic Models for Stochastic Switched Systems: A Discretization and a Discretization-Free Approach
Stochastic switched systems are a relevant class of stochastic hybrid systems
with probabilistic evolution over a continuous domain and control-dependent
discrete dynamics over a finite set of modes. In the past few years several
different techniques have been developed to assist in the stability analysis of
stochastic switched systems. However, more complex and challenging objectives
related to the verification of and the controller synthesis for logic
specifications have not been formally investigated for this class of systems as
of yet. With logic specifications we mean properties expressed as formulae in
linear temporal logic or as automata on infinite strings. This paper addresses
these complex objectives by constructively deriving approximately equivalent
(bisimilar) symbolic models of stochastic switched systems. More precisely,
this paper provides two different symbolic abstraction techniques: one requires
state space discretization, but the other one does not require any space
discretization which can be potentially more efficient than the first one when
dealing with higher dimensional stochastic switched systems. Both techniques
provide finite symbolic models that are approximately bisimilar to stochastic
switched systems under some stability assumptions on the concrete model. This
allows formally synthesizing controllers (switching signals) that are valid for
the concrete system over the finite symbolic model, by means of mature
automata-theoretic techniques in the literature. The effectiveness of the
results are illustrated by synthesizing switching signals enforcing logic
specifications for two case studies including temperature control of a six-room
building.Comment: 25 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1302.386
Sufficient conditions for the existence of Zeno behavior in a class of nonlinear hybrid systems via constant approximations
The existence of Zeno behavior in hybrid systems
is related to a certain type of equilibria, termed Zeno equilibria,
that are invariant under the discrete, but not the continuous,
dynamics of a hybrid system. In analogy to the standard
procedure of linearizing a vector field at an equilibrium point to
determine its stability, in this paper we study the local behavior
of a hybrid system near a Zeno equilibrium point by considering
the value of the vector field on each domain at this point, i.e., we
consider constant approximations of nonlinear hybrid systems.
By means of these constant approximations, we are able to
derive conditions that simultaneously imply both the existence
of Zeno behavior and the local exponential stability of a Zeno
equilibrium point. Moreover, since these conditions are in terms
of the value of the vector field on each domain at a point, they
are remarkably easy to verify
Control refinement for discrete-time descriptor systems: a behavioural approach via simulation relations
The analysis of industrial processes, modelled as descriptor systems, is
often computationally hard due to the presence of both algebraic couplings and
difference equations of high order. In this paper, we introduce a control
refinement notion for these descriptor systems that enables analysis and
control design over related reduced-order systems. Utilising the behavioural
framework, we extend upon the standard hierarchical control refinement for
ordinary systems and allow for algebraic couplings inherent to descriptor
systems.Comment: 8 pages, 3 figure
- …
