262 research outputs found
Characterizing scientific production and consumption in physics
We analyze the entire publication database of the American Physical Society generating longitudinal (50 years) citation networks geolocalized at the level of single urban areas. We define the knowledge diffusion proxy, and scientific production ranking algorithms to capture the spatio-temporal dynamics of Physics knowledge worldwide. By using the knowledge diffusion proxy we identify the key cities in the production and consumption of knowledge in Physics as a function of time. The results from the scientific production ranking algorithm allow us to characterize the top cities for scholarly research in Physics. Although we focus on a single dataset concerning a specific field, the methodology presented here opens the path to comparative studies of the dynamics of knowledge across disciplines and research areas
Random walks and search in time-varying networks
The random walk process underlies the description of a large number of real
world phenomena. Here we provide the study of random walk processes in time
varying networks in the regime of time-scale mixing; i.e. when the network
connectivity pattern and the random walk process dynamics are unfolding on the
same time scale. We consider a model for time varying networks created from the
activity potential of the nodes, and derive solutions of the asymptotic
behavior of random walks and the mean first passage time in undirected and
directed networks. Our findings show striking differences with respect to the
well known results obtained in quenched and annealed networks, emphasizing the
effects of dynamical connectivity patterns in the definition of proper
strategies for search, retrieval and diffusion processes in time-varying
network
Forecasting seasonal influenza fusing digital indicators and a mechanistic disease model
The availability of novel digital data streams that can be used as proxy for monitoring infectious disease incidence is ushering in a new era for real-time forecast approaches to disease spreading. Here, we propose the first seasonal influenza forecast framework based on a stochastic, spatially structured mechanistic model (individual level microsimulation) initialized with geo-localized microblogging data. The framework provides for more than 600 census areas in the United States, Italy and Spain, the initial conditions for a stochastic epidemic computational model that generates an ensemble of forecasts for the main indicators of the epidemic season: peak time and intensity. We evaluate the forecasts accuracy and reliability by comparing the results from our framework with the data from the official influenza surveillance systems in the US, Italy and Spain in the seasons 2014/15 and 2015/16. In all countries studied, the proposed framework provides reliable results with leads of up to 6 weeks that became more stable and accurate with progression of the season. The results for the United States have been generated in real-time in the context of the Centers for Disease Control and Prevention “Forecasting the Influenza Season Challenge". A characteristic feature of the mechanistic modeling approach is in the explicit estimate of key epidemiological parameters relevant for public health decision-making that cannot be achieved with statistical models not considering the disease dynamic. Furthermore, the presented framework allows the fusion of multiple data streams in the initialization stage and can be enriched with census, weather and socioeconomic data
The dynamics of information-driven coordination phenomena: a transfer entropy analysis
Data from social media are providing unprecedented opportunities to investigate the processes that rule the dynamics of collective social phenomena. Here, we consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of micro-blogging time series to extract directed networks of influence among geolocalized sub-units in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time-scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social sub-units. In the absence of a clear exogenous driving, social collective phenomena can be represented as endogenously-driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data
Social data mining and seasonal influenza forecasts: The FluOutlook platform
FluOutlook is an online platform where multiple data sources are integrated to initialize and train a portfolio of epidemic models for influenza forecast. During the 2014/15 season, the system has been used to provide real-time forecasts for 7 countries in North America and Europe
Controlling contagion processes in activity driven networks
The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set
The Twitter of Babel: Mapping World Languages through Microblogging Platforms
Large scale analysis and statistics of socio-technical systems that just a few short years ago would have required the use of consistent economic and human resources can nowadays be conveniently performed by mining the enormous amount of digital data produced by human activities. Although a characterization of several aspects of our societies is emerging from the data revolution, a number of questions concerning the reliability and the biases inherent to the big data “proxies” of social life are still open. Here, we survey worldwide linguistic indicators and trends through the analysis of a large-scale dataset of microblogging posts. We show that available data allow for the study of language geography at scales ranging from country-level aggregation to specific city neighborhoods. The high resolution and coverage of the data allows us to investigate different indicators such as the linguistic homogeneity of different countries, the touristic seasonal patterns within countries and the geographical distribution of different languages in multilingual regions. This work highlights the potential of geolocalized studies of open data sources to improve current analysis and develop indicators for major social phenomena in specific communities
Combining participatory influenza surveillance with modeling and forecasting
Background:
Influenza outbreaks affect millions of people every year and its surveillance is usually carried out in developed countries through a network of sentinel doctors who report the weekly number of Influenza-like Illness cases observed among the visited patients. Monitoring and forecasting the evolution of these outbreaks supports decision makers in designing effective interventions and allocating resources to mitigate their impact.
Objectives:
Describe the existing participatory surveillance approaches that have been used for modeling and forecasting of the seasonal influenza epidemic, and how they can help strengthen real-time epidemic science and provide a more rigorous understanding of epidemic conditions.
Methods:
We describe three different participatory surveillance systems, WISDM (Widely Internet Sourced Distributed Monitoring), InfluenzaNet and Flu Near You (FNY), and show how modeling and simulation can be or has been combined with participatory disease surveillance to: i) measure the non-response bias in a participatory surveillance sample using WISDM; and ii) nowcast and forecast influenza activity in different parts of the world (using InfluenzaNet and Flu Near You).
Results:
WISDM based results measure the participatory and sample bias for three epidemic metrics i.e. attack rate, peak infection rate, and time-to-peak, and find the participatory bias to be the largest component of the total bias. InfluenzaNet platform shows that digital participatory surveillance data combined with a realistic data-driven epidemiological model can provide both short-term and long-term forecasts of epidemic intensities; and the ground truth data lie within the 95 percent confidence intervals for most weeks. The statistical accuracy of the ensemble forecasts increase as the season progresses. The Flu Near You platform shows that participatory surveillance data provide accurate short-term flu activity forecasts and influenza activity predictions. The correlation of the HealthMap Flu Trends estimates with the observed CDC ILI rates is 0.99 for 2013-2015. Additional data sources lead to an error reduction of about 40% when compared to the estimates of the model that only incorporates CDC historical information.
Conclusions:
While the advantages of participatory surveillance, compared to traditional surveillance, include its timeliness, lower costs, and broader reach, it is limited by a lack of control over the characteristics of the population sample. Modeling and simulation can help overcome this limitation as well as provide real-time and long term forecasting of Influenza activity in data poor parts of the world
Damage detection via shortest-path network sampling
Large networked systems are constantly exposed to local damages and failures that can alter their functionality. The knowledge of the structure of these systems is, however, often derived through sampling strategies whose effectiveness at damage detection has not been thoroughly investigated so far. Here, we study the performance of shortest-path sampling for damage detection in large-scale networks. We define appropriate metrics to characterize the sampling process before and after the damage, providing statistical estimates for the status of nodes (damaged, not damaged). The proposed methodology is flexible and allows tuning the trade-off between the accuracy of the damage detection and the number of probes used to sample the network. We test and measure the efficiency of our approach considering both synthetic and real networks data. Remarkably, in all of the systems studied, the number of correctly identified damaged nodes exceeds the number of false positives, allowing us to uncover the damage precisely
- …
