7 research outputs found

    Quantifying mesoscale-driven nitrate supply: a case study

    Get PDF
    The supply of nitrate to surface waters plays a crucial role in maintaining marine life. Physical processes at the mesoscale (~10-100?km) and smaller have been advocated to provide a major fraction of the global supply. Whilst observational studies have focussed on well-defined features, such as isolated eddies, the vertical circulation and nutrient supply in a typical 100-200?km square of ocean will involve a turbulent spectrum of interacting, evolving and decaying features. A crucial step in closing the ocean nitrogen budget is to be able to rank the importance of mesoscale fluxes against other sources of nitrate for surface waters for a representative area of open ocean. While this has been done using models, the vital observational equivalent is still lacking.To illustrate the difficulties that prevent us from putting a global estimate on the significance of the mesoscale observationally, we use data from a cruise in the Iceland Basin where vertical velocity and nitrate observations were made simultaneously at the same high spatial resolution. Local mesoscale nitrate flux is found to be an order of magnitude greater than that due to small-scale vertical mixing and exceeds coincident nitrate uptake rates and estimates of nitrate supply due to winter convection. However, a non-zero net vertical velocity for the region introduces a significant bias in regional estimates of the mesoscale vertical nitrate transport. The need for synopticity means that a more accurate estimate can not be simply found by using a larger survey area. It is argued that time-series, rather than spatial surveys, may be the best means to quantify the contribution of mesoscale processes to the nitrate budget of the surface ocean

    The Lifecycle of Semidiurnal Internal Tides over the Northern Mid-Atlantic Ridge

    Get PDF
    The lifecycle of semidiurnal internal tides over the Mid-Atlantic Ridge (MAR) sector south of the Azores is investigated using in situ, a high-resolution mooring and microstructure profiler, and satellite data, in combination with a theoretical model of barotropic-to-baroclinic tidal energy conversion. The mooring analysis reveals that the internal-tide horizontal energy flux is dominated by mode 1, and that energy density is more distributed among modes 1-10. Most modes are compatible with an interpretation in terms of standing internal tides, suggesting that they result from interactions between waves generated over the MAR. Internal tide energy is thus concentrated above the ridge and is eventually available for local diapycnal mixing, as endorsed by the elevated rates of turbulent energy dissipation, ε, estimated from microstructure measurements. A spring-neap modulation of energy density on the MAR is found to originate from the remote generation and radiation of strong mode-1 internal tides from the Atlantis Meteor Seamount Complex. Similar fortnightly variability of a factor of 2 is observed in ε, but this signal’s origin cannot be determined unambiguously. A regional tidal energy budget highlights the significance of high-mode generation, with 81% of the energy lost by the barotropic tide being converted into modes > 1, and only 9% into mode 1. This has important implications for the fraction of local dissipation to the total energy conversion, q, which is regionally estimated to be ~0.5. This result is in stark contrast with the Hawaiian Ridge system, where the radiation of mode-1 internal tides accounts for 30% of the regional energy conversion, and q < 0.25

    Particulate phases are key in controlling dissolved iron concentrations in the (sub)tropical North Atlantic

    Get PDF
    The supply and bioavailability of iron (Fe) controls primary productivity and N2 fixation in large parts of the global ocean. An important, yet poorly quantified, source to the ocean is particulate Fe (pFe). Here we present the first combined dataset of particulate, labile-particulate (L-pFe), and dissolved Fe (dFe) from the (sub)tropical North Atlantic. We show a strong relationship between L-pFe and dFe, indicating a dynamic equilibrium between these two phases whereby particles “buffer” dFe and maintain the elevated concentrations observed. Moreover, L-pFe can increase the overall “available” (L-pFe + dFe) Fe pool by up to 55%. The lateral shelf flux of this available Fe was similar in magnitude to observed soluble aerosol-Fe deposition, a comparison that has not been previously considered. These findings demonstrate that L-pFe is integral to Fe cycling and hence plays a role in regulating carbon cycling, warranting its inclusion in Fe budgets and biogeochemical models

    MeRMEED cruise and mooring data - Vertical microstructure, CTD, vessel mounted ADCP, moored ADCP

    No full text
    Cruise data collected across three separate cruises MeRMEED-1 (WS16336; 1-7 December 2016), MeRMEED-2 (WS17305; 31 October - 10 November 2017) and MeRMEED-3 (WS18066; 4-16 March 2018). All cruises were aboard the R/V F. G. Walton Smith. Cruise region: 76.5W-77.2W, 26.15N-26.8N. Cruises consisted of zonal tethered vertical microstructure profiler (VMP) and vessel mounted acoustic Doppler current profiler (ADCP) surveys, yielding sections of the turbulent dissipation rate (units: W/kg) and zonal and meridional velocity (units: m/s). The VMP used was the tethered Rockland Scientific International VMP-2000, and the ADCP was a vessel-mounted RDI 75 kHz Ocean Surveyor ADCP configured and run through the University of Hawai'i Data Acquisition System (UHDAS) software suite. The VMP was also mounted with a CTD (conductivity-temperature-depth) sensor package, including SBE-3 and SBE-4 sensors. The CTD data was processed according to the manufacturer specifications, using recommended values for the cell thermal mass coefficients (alpha=0.03 and beta=7.0). Files are named as follows: WSxxxxx_CTD.mat, WSxxxxx_vmp_all.mat and WSxxxxx_os75nb.nc for CTD, VMP and ADCP data respectively. Mooring-based data is from two 75 kHz ADCPs, one upward facing and the other downward facing, mounted at approximately 700 m on the RAPID/MOCHA (Rapid Climate Change / Meridional Overturning Circulation and Heat flux Array) mooring WB1 at 76.8W and 26.5N. This configuration gave full depth meridional and zonal velocity profiles (units: m/s) in a water depth of approximately 1300 m. The data spanned December 2015 to March 2017. The data are binned in 16 m depth bins and are bin averaged into 1 hour time bins. File name: WB1_adcp_UV_1hr.mat

    Buoyancy flux and mixing efficiency from direct, near-bottom turbulence measurements in a submarine canyon

    No full text
    Turbulent kinetic energy and thermal variance dissipation rates ϵ and χ , buoyancy flux J b , diffusivity κ ρ , and mixing coefficient , which is simply related to the mixing efficiency , are estimated from highly resolved microstructure measurements collected in a submarine canyon that has been previously shown to be experiencing near-bottom diapycnal upwelling. It is demonstrated that turbulence arises primarily from the convective instability of the internal tide. Twelve tidally resolving stations (12–48 h long) were conducted, wherein profiles were collected from between 5–15 m and 400 m above the bottom every 13–15 min using a custom turbulence vehicle. Turbulent buoyancy flux is estimated using the Osborn and Winters and D’Asaro methods, allowing direct estimation of the mixing coefficient as a function of time, temperature, and height above bottom. Turbulent dissipation and buoyancy flux generally increase toward the seafloor. The associated turbulent diapycnal diffusivity is 10 −4 –10 −2 m 2 s −1 . Observed is ∼0.2 ± 0.05 near the top of our measurement range, as expected in the ocean interior, and increases to 0.3–0.7 approaching the bottom, consistent with turbulence generated by convective instability

    Outcomes and characteristics of nonmelanoma skin cancers in patients with myeloproliferative neoplasms on ruxolitinib

    No full text
    Nonmelanoma skin cancers (NMSCs) in ruxolitinib-treated patients with myeloproliferative neoplasms behave aggressively, with adverse features and high recurrence. In our cohort, mortality from metastatic NMSC exceeded that from myelofibrosis. Vigilant skin assessment, counseling on NMSC risks, and prospective ruxolitinib-NMSC studies are crucial.</p
    corecore