17 research outputs found

    Classification of electromagnetic resonances in finite inhomogeneous three-dimensional structures

    Full text link
    We present a simple and unified classification of macroscopic electromagnetic resonances in finite arbitrarily inhomogeneous isotropic dielectric 3D structures situated in free space. By observing the complex-plane dynamics of the spatial spectrum of the volume integral operator as a function of angular frequency and constitutive parameters we identify and generalize all the usual resonances, including complex plasmons, real laser resonances in media with gain, and real quasi-static resonances in media with negative permittivity and gain.Comment: 4 pages, 2 figure

    Singular Modes of the Electromagnetic Field

    Get PDF
    We show that the mode corresponding to the point of essential spectrum of the electromagnetic scattering operator is a vector-valued distribution representing the square root of the three-dimensional Dirac's delta function. An explicit expression for this singular mode in terms of the Weyl sequence is provided and analyzed. An essential resonance thus leads to a perfect localization (confinement) of the electromagnetic field, which in practice, however, may result in complete absorption.Comment: 14 pages, no figure

    Iteration and Discretization Methods for Solving the Volume Integral Equations

    Full text link

    An Efficient Method for Solving Problems of Acoustic Scattering on Three-Dimensional Transparent Structures

    No full text
    The article contains a study of methods for solving integral equations in the context of acoustic problems. The methodology considered is applied to describe acoustic wave propagation and scattering. Efficient discretization methods are used together with iterative methods to solve the operator equations, including an apparatus for fast multiplication of the resulting post-discretization Toeplitz matrices by a vector using the fast Fourier transform. The theoretical analysis of the proposed numerical algorithm demonstrates its efficiency in terms of the required number of arithmetic operations and the memory footprint of the computing system. The presented numerical simulation demonstrates the possibility of solving the problem of acoustic wave propagation in transparent media using the proposed methods. A visualization of the obtained solutions for a practical problem with a high level of discretization of the solution volume domain is also presented
    corecore