1,094 research outputs found
Brane Gas Inflation
We consider the brane gas picture of the early universe. At later stages,
when there are no winding modes and the background is free to expand, we show
that a moving 3-brane, which we identify with our universe, can inflate even
though it is radiation-dominated. The crucial ingredients for successful
inflation are the coupling to the dilaton and the equation of state of the
bulk. If we suppose the brane initially forms in a collision of
higher-dimensional branes, then the spectrum of primordial density fluctuations
naturally has a thermal origin.Comment: 4 pages, 1 figur
Brane Gas Cosmology, M-theory and Little String Theory
We generalize the Brane Gas Cosmological Scenario to M-theory degrees of
freedom, namely and branes. Without brane intersections, the
Brandenberger Vafa(BV) arguments applied to M-theory degrees of freedom
generically predict a large 6 dimensional spacetime. We show that intersections
of and branes can instead lead to a large 4 dimensional spacetime.
One dimensional intersections in 11D is related to (2,0) little strings (LST)
on NS5 branes in type IIA. The gas regime of membranes in M-theory corresponds
to the thermodynamics of LST obtained from holography. We propose a mechanism
whereby LST living on the worldvolume of NS5 (M5)-branes wrapping a five
dimensional torus, annihilate most efficiently in 3+1 dimensions leading to a
large 3+1 dimensional spacetime. We also show that this picture is consistent
with the gas approximation in M-theory.Comment: 8 page
D-Brane Chemistry
We study several different kinds of bound states built from D-branes and
orientifolds. These states are to atoms what branonium - the bound state of a
brane and its anti-brane - is to positronium, inasmuch as they typically
involve a light brane bound to a much heavier object with conserved charges
which forbid the system's decay. We find the fully relativistic motion of a
probe Dp'-brane in the presence of source Dp-branes is integrable by
quadratures. Keplerian conic sections are obtained for special choices for p
and p' and the systems are shown to be equivalent to nonrelativistic systems.
Their quantum behaviour is also equivalent to the corresponding
non-relativistic limit. In particular the p=6, p'=0 case is equivalent to a
non-relativistic dyon in a magnetic monopole background, with the trajectories
in the surface of a cone. We also show that the motion of the probe branes
about D6-branes in IIA theory is equivalent to the motion of the corresponding
probes in the uplift to M-theory in 11 dimensions, for which there are no
D6-branes but their fields are replaced by a particular Taub-NUT geometry. We
further discuss the interactions of D-branes and orientifold planes having the
same dimension. this system behaves at large distances as a brane-brane system
but at shorter distances it does not have the tachyon instability.Comment: ref. added and typos correcte
An Inflationary Model in String Theory
We construct a model of inflation in string theory after carefully taking
into account moduli stabilization. The setting is a warped compactification of
Type IIB string theory in the presence of D3 and anti-D3-branes. The inflaton
is the position of a D3-brane in the internal space. By suitably adjusting
fluxes and the location of symmetrically placed anti-D3-branes, we show that at
a point of enhanced symmetry, the inflaton potential V can have a broad
maximum, satisfying the condition V''/V << 1 in Planck units. On starting close
to the top of this potential the slow-roll conditions can be met. Observational
constraints impose significant restrictions. As a first pass we show that these
can be satisfied and determine the important scales in the compactification to
within an order of magnitude. One robust feature is that the scale of inflation
is low, H = O(10^{10}) GeV. Removing the observational constraints makes it
much easier to construct a slow-roll inflationary model. Generalizations and
consequences including the possibility of eternal inflation are also discussed.
A more careful study, including explicit constructions of the model in string
theory, is left for the future.Comment: 27 pages, LaTeX, 1 eps figure. v2: references adde
M-Theory Moduli Space and Cosmology
We conduct a systematic search for a viable string/M-theory cosmology,
focusing on cosmologies that include an era of slow-roll inflation, after which
the moduli are stabilized and the Universe is in a state with an acceptably
small cosmological constant. We observe that the duality relations between
different cosmological backgrounds of string/M-theory moduli space are greatly
simplified, and that this simplification leads to a truncated moduli space
within which possible cosmological solutions lie. We review some known
challenges to four dimensional models in the "outer", perturbative, region of
moduli space, and use duality relations to extend them to models of all of the
(compactified) perturbative string theories and 11D supergravity, including
brane world models. We conclude that cosmologies restricted to the outer region
are not viable, and that the most likely region of moduli space in which to
find realistic cosmology is the "central", non-perturbative region, with
coupling and compact volume both of order unity, in string units.Comment: 42 pages, 3 figure
Lifetime of Stringy de Sitter Vacua
In this note we perform a synopsis of the life-times from vacuum decay of
several de Sitter vacuum constructions in string/M-theory which have a single
dS minimum arising from lifting a pre-existing AdS extremum and no other local
minima existent after lifting. For these vacua the decay proceeds via a
Coleman--De Luccia instanton towards the universal Minkowski minimum at
infinite volume. This can be calculated using the thin--wall approximation,
provided the cosmological constant of the local dS minimum is tuned
sufficiently small. We compare the estimates for the different model classes
and find them all stable in the sense of exponentially long life times as long
as they have a very small cosmological constant and a scale of supersymmetry
breaking > TeV.Comment: 1+16 pages, 2 figures, LaTeX, uses JHEP3 class, v2: references added,
inclusion of an additional subclass of de Sitter vacu
Inflation with improved D3-brane potential and the fine tunings associated with the model
We investigate brane-antibrane inflation in a warped deformed conifold
background that includes contributions to the potential arising from imaginary
anti-self-dual (IASD) fluxes including the term with irrational scaling
dimension discovered recently. We find that the model can give rise to required
number of e-foldings; observational constraint on COBE normalization is easily
satisfied and low value of the tensor to scalar ratio of perturbations is
achieved. We observe that these corrections to the effective potential help in
relaxing the severe fine tunings associated with the earlier analysis.Comment: 8 pages, 4 figures; typos corrected, minor clarifications and new
refs added, to appear in epj
Distribution of local density of states in disordered metallic samples: logarithmically normal asymptotics
Asymptotical behavior of the distribution function of local density of states
(LDOS) in disordered metallic samples is studied with making use of the
supersymmetric --model approach, in combination with the saddle--point
method. The LDOS distribution is found to have the logarithmically normal
asymptotics for quasi--1D and 2D sample geometry. In the case of a quasi--1D
sample, the result is confirmed by the exact solution. In 2D case a perfect
agreement with an earlier renormalization group calculation is found. In 3D the
found asymptotics is of somewhat different type: P(\rho)\sim
\exp(-\mbox{const}\,|\ln^3\rho|).Comment: REVTEX, 14 pages, no figure
On the Initial Conditions for Brane Inflation
String theory gives rise to various mechanisms to generate primordial
inflation, of which ``brane inflation'' is one of the most widely considered.
In this scenario, inflation takes place while two branes are approaching each
other, and the modulus field representing the separation between the branes
plays the role of the inflaton field. We study the phase space of initial
conditions which can lead to a sufficiently long period of cosmological
inflation, and find that taking into account the possibility of nonvanishing
initial momentum can significantly change the degree of fine tuning of the
required initial conditions.Comment: 11 pages, 2 figure
- …
