20,438 research outputs found
Casimir forces in the time domain II: Applications
Our preceding paper introduced a method to compute Casimir forces in
arbitrary geometries and for arbitrary materials that was based on a
finite-difference time-domain (FDTD) scheme. In this manuscript, we focus on
the efficient implementation of our method for geometries of practical interest
and extend our previous proof-of-concept algorithm in one dimension to problems
in two and three dimensions, introducing a number of new optimizations. We
consider Casimir piston-like problems with nonmonotonic and monotonic force
dependence on sidewall separation, both for previously solved geometries to
validate our method and also for new geometries involving magnetic sidewalls
and/or cylindrical pistons. We include realistic dielectric materials to
calculate the force between suspended silicon waveguides or on a suspended
membrane with periodic grooves, also demonstrating the application of PML
absorbing boundaries and/or periodic boundaries. In addition we apply this
method to a realizable three-dimensional system in which a silica sphere is
stably suspended in a fluid above an indented metallic substrate. More
generally, the method allows off-the-shelf FDTD software, already supporting a
wide variety of materials (including dielectric, magnetic, and even anisotropic
materials) and boundary conditions, to be exploited for the Casimir problem.Comment: 11 pages, 12 figures. Includes additional examples (dispersive
materials and fully three-dimensional systems
Structural anisotropy and orientation-induced Casimir repulsion in fluids
In this work we theoretically consider the Casimir force between two periodic
arrays of nanowires (both in vacuum, and on a substrate separated by a fluid)
at separations comparable to the period. Specifically, we compute the
dependence of the exact Casimir force between the arrays under both lateral
translations and rotations. Although typically the force between such
structures is well-characterized by the Proximity Force Approximation (PFA), we
find that in the present case the microstructure modulates the force in a way
qualitatively inconsistent with PFA. We find instead that effective-medium
theory, in which the slabs are treated as homogeneous, anisotropic dielectrics,
gives a surprisingly accurate picture of the force, down to separations of half
the period. This includes a situation for identical, fluid-separated slabs in
which the exact force changes sign with the orientation of the wire arrays,
whereas PFA predicts attraction. We discuss the possibility of detecting these
effects in experiments, concluding that this effect is strong enough to make
detection possible in the near future.Comment: 12 pages, 9, figure. Published version with expanded discussio
Structural anisotropy and orientation-induced Casimir repulsion in fluids
In this work we theoretically consider the Casimir force between two periodic
arrays of nanowires (both in vacuum, and on a substrate separated by a fluid)
at separations comparable to the period. Specifically, we compute the
dependence of the exact Casimir force between the arrays under both lateral
translations and rotations. Although typically the force between such
structures is well-characterized by the Proximity Force Approximation (PFA), we
find that in the present case the microstructure modulates the force in a way
qualitatively inconsistent with PFA. We find instead that effective-medium
theory, in which the slabs are treated as homogeneous, anisotropic dielectrics,
gives a surprisingly accurate picture of the force, down to separations of half
the period. This includes a situation for identical, fluid-separated slabs in
which the exact force changes sign with the orientation of the wire arrays,
whereas PFA predicts attraction. We discuss the possibility of detecting these
effects in experiments, concluding that this effect is strong enough to make
detection possible in the near future.Comment: 12 pages, 9, figure. Published version with expanded discussio
Gapless spin-liquid state in the structurally disorder-free triangular antiferromagnet NaYbO
We present the structural characterization and low-temperature magnetism of
the triangular-lattice delafossite NaYbO. Synchrotron x-ray diffraction and
neutron scattering exclude both structural disorder and crystal-electric-field
randomness, whereas heat-capacity measurements and muon spectroscopy reveal the
absence of magnetic order and persistent spin dynamics down to at least 70\,mK.
Continuous magnetic excitations with the low-energy spectral weight
accumulating at the -point of the Brillouin zone indicate the formation of a
novel spin-liquid phase in a triangular antiferromagnet. This phase is gapless
and shows a non-trivial evolution of the low-temperature specific heat. Our
work demonstrates that NaYbO practically gives the most direct experimental
access to the spin-liquid physics of triangular antiferromagnets.Comment: 6 pages, 4figure
Achieving a Strongly Temperature-Dependent Casimir Effect
We propose a method of achieving large temperature sensitivity in the Casimir
force that involves measuring the stable separation between dielectric objects
immersed in fluid. We study the Casimir force between slabs and spheres using
realistic material models, and find large > 2nm/K variations in their stable
separations (hundreds of nanometers) near room temperature. In addition, we
analyze the effects of Brownian motion on suspended objects, and show that the
average separation is also sensitive to changes in temperature . Finally, this
approach also leads to rich qualitative phenomena, such as irreversible
transitions, from suspension to stiction, as the temperature is varied
Calculation of nonzero-temperature Casimir forces in the time domain
We show how to compute Casimir forces at nonzero temperatures with
time-domain electromagnetic simulations, for example using a finite-difference
time-domain (FDTD) method. Compared to our previous zero-temperature
time-domain method, only a small modification is required, but we explain that
some care is required to properly capture the zero-frequency contribution. We
validate the method against analytical and numerical frequency-domain
calculations, and show a surprising high-temperature disappearance of a
non-monotonic behavior previously demonstrated in a piston-like geometry.Comment: 5 pages, 2 figures, submitted to Physical Review A Rapid
Communicatio
T-duality and Differential K-Theory
We give a precise formulation of T-duality for Ramond-Ramond fields. This
gives a canonical isomorphism between the "geometrically invariant" subgroups
of the twisted differential K-theory of certain principal torus bundles. Our
result combines topological T-duality with the Buscher rules found in physics.Comment: 23 pages, typos corrected, submitted to Comm.Math.Phy
Computation and visualization of photonic quasicrystal spectra via Blochs theorem
Previous methods for determining photonic quasicrystal (PQC) spectra have
relied on the use of large supercells to compute the eigenfrequencies and/or
local density of states (LDOS). In this manuscript, we present a method by
which the energy spectrum and the eigenstates of a PQC can be obtained by
solving Maxwells equations in higher dimensions for any PQC defined by the
standard cut-and-project construction, to which a generalization of Blochs
theorem applies. In addition, we demonstrate how one can compute band
structures with defect states in the higher-dimensional superspace with no
additional computational cost. As a proof of concept, these general ideas are
demonstrated for the simple case of one-dimensional quasicrystals, which can
also be solved by simple transfer-matrix techniques.Comment: Published in Physical Review B, 77 104201, 200
Microstructure Effects for Casimir Forces in Chiral Metamaterials
We examine a recent prediction for the chirality-dependence of the Casimir
force in chiral metamaterials by numerical computation of the forces between
the exact microstructures, rather than homogeneous approximations. We compute
the exact force for a chiral bent-cross pattern, as well as forces for an
idealized "omega"-particle medium in the dilute approximation and identify the
effects of structural inhomogeneity (i.e. proximity forces and anisotropy). We
find that these microstructure effects dominate the force for separations where
chirality was predicted to have a strong influence. To get observations of
chirality free from microstructure effects, one must go to large separations
where the effect of chirality is at most of the total force.Comment: 5 pages, 4 figure
- …
