192 research outputs found
Vector-Like Top Quark Production via an Electroweak Dipole Moment at a Muon Collider
Vectorial partners of the Standard Model quarks and leptons are predicted in
many dynamical models of electroweak symmetry breaking. The most easily
accessible of these new particles, either due to mass or couplings, are
typically expected to be the partners of the third-generation fermions. It is
therefore essential to explore the signatures of these particles at future
high-energy colliders. We study the potential of a high-energy muon collider to
singly produce a vector-like top-quark partner via an electroweak dipole moment
operator, such an operator being typical of composite constructions beyond the
Standard Model. We use a phenomenological model for third-generation quarks and
their partners that satisfies an extended custodial symmetry. This
automatically protects the -boson and -boson masses from receiving large
electroweak corrections, and it allows the model to be viable given current
electroweak data. We demonstrate that cross sections associated with
dipole-induced vector-like quark production can easily exceed those inherent to
more conventional single-production modes via ordinary electroweak couplings.
We then explore the associated phenomenology, and we show that at least one
(and often more than one) of the extra vector-like states can be studied at
high-energy muon colliders. Typical accessible masses are found to range up to
close to the kinematic production threshold, when the vector-like partners are
produced in combination with an ordinary top quark.Comment: 37 pages, 11 figures, 1 table. matches published versio
The impurity influence on the formation of oxide layers on TiAL surface
Using ab initio approach the segregation of 4d impurities to low index TiAl surfaces was studied. The site preference for all considered impurities was determined. We demonstrate that Y, Zr, Nb и Mo prefer to occupy the Ti-sublattice whereas other elements are located mainly on the Al-sublattice in case of their low concentration. The influence of impurities on oxygen adsorption on the stoichiometric γ-TiAl(100) surface is investigated. It is shown that the 4d impurities substituting for Ti result in decrease of oxygen adsorption energy whereas it increases if transition metal impurities occupy the Al-sublattice. The effect of some elements of V and VI groups on the adhesion at interfaces such as TiAl(001)Al/TiO2(001), TiAl(001)Ti/TiO2(001), TiAl(100)/TiO2(001), TiAl(110)Al/TiO2(100)O and TiAl(110)Ti/TiO2(100)O in dependence on their location in interfacial layers was also studied. Finally, we demonstrate that the 4d alloying elements with number of electrons from 2 to 5 lead to decrease of the relative stability of Al2O3 to TiO2 and to increase of the formation energy of O vacancy in TiO2. The latter is beneficial to the oxidation resistance of TiAl alloys
Evolutionary games on graphs
Game theory is one of the key paradigms behind many scientific disciplines
from biology to behavioral sciences to economics. In its evolutionary form and
especially when the interacting agents are linked in a specific social network
the underlying solution concepts and methods are very similar to those applied
in non-equilibrium statistical physics. This review gives a tutorial-type
overview of the field for physicists. The first three sections introduce the
necessary background in classical and evolutionary game theory from the basic
definitions to the most important results. The fourth section surveys the
topological complications implied by non-mean-field-type social network
structures in general. The last three sections discuss in detail the dynamic
behavior of three prominent classes of models: the Prisoner's Dilemma, the
Rock-Scissors-Paper game, and Competing Associations. The major theme of the
review is in what sense and how the graph structure of interactions can modify
and enrich the picture of long term behavioral patterns emerging in
evolutionary games.Comment: Review, final version, 133 pages, 65 figure
Orphan crops of archaeology-based crop history research
Societal Impact Statement:
Agrobiodiversity is central to sustainable farming worldwide. Cultivation, conservation and reintroduction of diverse plant species, including ‘forgotten’ and ‘underutilized’ crops, contribute to global agrobiodiversity, living ecosystems and sustainable food production. Such efforts benefit from traditional and historical knowledge of crop plants' evolutionary and cultural trajectories. This review is a first attempt at systematically gauging species representativeness in studies of archaeological plant remains. Results indicate that, in addition to discipline-specific methodological sources of bias, modern agricultural biases may replicate themselves in crop history research and influence understandings of ‘forgotten crops’. Recognizing these biases is an initial stride towards rectifying them and promoting agrobiodiversity in both research and practical applications.
//
Summary:
So-called ‘forgotten’ or ‘orphan’ crops are an important component of strategies aimed at preserving and promoting biodiversity. Knowledge of historical cultivation, usage, and geographic and evolutionary trajectories of plants, that is, crop history research, is important for the long-term success of such efforts. However, research biases in the crops chosen for study may present hurdles. This review attempts to systematically identify patterns in crop species representativeness within archaeology-based crop history research. A meta-analysis and synthesis of archaeobotanical evidence (and lack thereof) is presented for 268 species known to have been cultivated for food prior to 1492 CE from the Mediterranean region to South Asia. We identified 39 genera with known crop plants in this geographical and historical context that are currently absent from its archaeobotanical record, constituting ‘orphan’ crops of archaeobotany. In addition, a worldwide synthesis of crop species studied using geometric morphometric, archaeogenetic and stable isotope analyses of archaeological plant remains is presented, and biases in the species represented in these disciplines are discussed. Both disciplinary methodological biases and economic agenda-based biases affecting species representativeness in crop history research are apparent. This study also highlights the limited geographic diffusion of most crops and the potential for deeper historical perspectives on how crops become marginalized and ‘forgotten’
Orphan crops of archaeology-based crop history research
So-called ‘forgotten’ or ‘orphan’ crops are an important component of strategies aimed at preserving and promoting biodiversity. Knowledge of historical cultivation, usage, and geographic and evolutionary trajectories of plants, that is, crop history research, is important for the long-term success of such efforts. However, research biases in the crops chosen for study may present hurdles. This review attempts to systematically identify patterns in crop species representativeness within archaeology-based crop history research. A meta-analysis and synthesis of archaeo- botanical evidence (and lack thereof) is presented for 268 species known to have been cultivated for food prior to 1492 CE from the Mediterranean region to South Asia. We identified 39 genera with known crop plants in this geographical and histor- ical context that are currently absent from its archaeobotanical record, constituting ‘orphan’ crops of archaeobotany. In addition, a worldwide synthesis of crop species studied using geometric morphometric, archaeogenetic and stable isotope analyses of archaeological plant remains is presented, and biases in the species represented in these disciplines are discussed. Both disciplinary methodological biases and economic agenda-based biases affecting species representativeness in crop history research are apparent. This study also highlights the limited geographic diffusion of most crops and the potential for deeper historical perspectives on how crops become marginal- ized and ‘forgotten’
Quantum information meets high-energy physics: input to the update of the European strategy for particle physics
Some of the most astonishing and prominent properties of Quantum Mechanics, such as entanglement and Bell nonlocality, have only been studied extensively in dedicated low-energy laboratory setups. The feasibility of these studies in the high-energy regime explored by particle colliders was only recently shown and has gathered the attention of the scientific community. For the range of particles and fundamental interactions involved, particle colliders provide a novel environment where quantum information theory can be probed, with energies exceeding by about 12 orders of magnitude those employed in dedicated laboratory setups. Furthermore, collider detectors have inherent advantages in performing certain quantum information measurements and allow for the reconstruction of the state of the system under consideration via quantum state tomography. Here, we elaborate on the potential, challenges, and goals of this innovative and rapidly evolving line of research and discuss its expected impact on both quantum information theory and high-energy physics
Spatial Bistability Generates hunchback Expression Sharpness in the Drosophila Embryo
During embryonic development, the positional information provided by concentration gradients of maternal factors directs pattern formation by providing spatially dependent cues for gene expression. In the fruit fly, Drosophila melanogaster, a classic example of this is the sharp on–off activation of the hunchback (hb) gene at midembryo, in response to local concentrations of the smooth anterior–posterior Bicoid (Bcd) gradient. The regulatory region for hb contains multiple binding sites for the Bcd protein as well as multiple binding sites for the Hb protein. Some previous studies have suggested that Bcd is sufficient for properly sharpened Hb expression, yet other evidence suggests a need for additional regulation. We experimentally quantified the dynamics of hb gene expression in flies that were wild-type, were mutant for hb self-regulation or Bcd binding, or contained an artificial promoter construct consisting of six Bcd and two Hb sites. In addition to these experiments, we developed a reaction–diffusion model of hb transcription, with Bcd cooperative binding and hb self-regulation, and used Zero Eigenvalue Analysis to look for multiple stationary states in the reaction network. Our model reproduces the hb developmental dynamics and correctly predicts the mutant patterns. Analysis of our model indicates that the Hb sharpness can be produced by spatial bistability, in which hb self-regulation produces two stable levels of expression. In the absence of self-regulation, the bistable behavior vanishes and Hb sharpness is disrupted. Bcd cooperative binding affects the position where bistability occurs but is not itself sufficient for a sharp Hb pattern. Our results show that the control of Hb sharpness and positioning, by hb self-regulation and Bcd cooperativity, respectively, are separate processes that can be altered independently. Our model, which matches the changes in Hb position and sharpness observed in different experiments, provides a theoretical framework for understanding the data and in particular indicates that spatial bistability can play a central role in threshold-dependent reading mechanisms of positional information
Dark Matter benchmark models for early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum
This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations
Orphan crops of archaeology-based crop history research
Agrobiodiversity is central to sustainable farming worldwide. Cultivation, conservation and reintroduction of diverse plant species, including ‘forgotten’ and ‘underutilized’ crops, contribute to global agrobiodiversity, living ecosystems and sustainable food production. Such efforts benefit from traditional and historical knowledge of crop plants' evolutionary and cultural trajectories. This review is a first attempt at systematically gauging species representativeness in studies of archaeological plant remains. Results indicate that, in addition to discipline-specific methodological sources of bias, modern agricultural biases may replicate themselves in crop history research and influence understandings of ‘forgotten crops’. Recognizing these biases is an initial stride towards rectifying them and promoting agrobiodiversity in both research and practical applications. Summary: So-called ‘forgotten’ or ‘orphan’ crops are an important component of strategies aimed at preserving and promoting biodiversity. Knowledge of historical cultivation, usage, and geographic and evolutionary trajectories of plants, that is, crop history research, is important for the long-term success of such efforts. However, research biases in the crops chosen for study may present hurdles. This review attempts to systematically identify patterns in crop species representativeness within archaeology-based crop history research. A meta-analysis and synthesis of archaeobotanical evidence (and lack thereof) is presented for 268 species known to have been cultivated for food prior to 1492 CE from the Mediterranean region to South Asia. We identified 39 genera with known crop plants in this geographical and historical context that are currently absent from its archaeobotanical record, constituting ‘orphan’ crops of archaeobotany. In addition, a worldwide synthesis of crop species studied using geometric morphometric, archaeogenetic and stable isotope analyses of archaeological plant remains is presented, and biases in the species represented in these disciplines are discussed. Both disciplinary methodological biases and economic agenda-based biases affecting species representativeness in crop history research are apparent. This study also highlights the limited geographic diffusion of most crops and the potential for deeper historical perspectives on how crops become marginalized and ‘forgotten’
- …
