1,971 research outputs found

    On the ground electronic states of copper silicide and its ions

    Get PDF
    The low-lying electronic states of SiCu, SiCu^+, and SiCu^− have been studied using a variety of high-level ab initio techniques. As expected on the basis of simple orbital occupancy and bond forming for Si(s^2p^2)+Cu(s^1) species, ^2Π_r, ^1Σ^+, and ^3Σ^− states were found to be the ground electronic states for SiCu, SiCu^+, and SiCu^−, respectively; the ^2Π_r state is not that suggested in most recent experimental studies. All of these molecules were found to be quite strongly bound although the bond lengths, bond energies, and harmonic frequencies vary slightly among them, as a result of the nonbonding character of the 2π-MO (molecular orbital) [composed almost entirely of the Si 3p-AO (atomic orbital)], the occupation of which varies from 0 to 2 within the ^1Σ^+, ^2Π_r, and ^3Σ^− series. The neutral SiCu is found to have bound excited electronic states of ^4Σ^−, ^2Δ, ^2Σ^+, and ^2Π_i symmetry lying 0.5, 1.2, 1.8, and 3.2 eV above the ^2Π_r ground state. It is possible but not yet certain that the ^2Π_i state is, in fact, the “B state” observed in the recent experimental studies by Scherer, Paul, Collier, and Saykally

    Tidal modulation of ice shelf buttressing stresses

    Get PDF
    Ocean tides influence the flow of marine-terminating glaciers. Observations indicate that the large fortnightly variations in ice flow at Rutford Ice Stream in West Antarctica originate in the floating ice shelf. We show that nonlinear variations in ice shelf buttressing driven by tides can produce such fortnightly variations in ice flow. These nonlinearities in the tidal modulation of buttressing stresses can be caused by asymmetries in the contact stress from migration of the grounding line and bathymetric pinning points beneath the ice shelf. Using a simple viscoelastic model, we demonstrate that a combination of buttressing and hydrostatic stress variations can explain a diverse range of tidal variations in ice shelf flow, including the period, phase and amplitude of flow variations observed at Rutford and Bindschadler Ice Streams

    z~2: An Epoch of Disk Assembly

    Full text link
    We explore the evolution of the internal gas kinematics of star-forming galaxies from the peak of cosmic star-formation at z2z\sim2 to today. Measurements of galaxy rotation velocity VrotV_{rot}, which quantify ordered motions, and gas velocity dispersion σg\sigma_g, which quantify disordered motions, are adopted from the DEEP2 and SIGMA surveys. This sample covers a continuous baseline in redshift from z=2.5z=2.5 to z=0.1z=0.1, spanning 10 Gyrs. At low redshift, nearly all sufficiently massive star-forming galaxies are rotationally supported (Vrot>σgV_{rot}>\sigma_g). By z=2z=2, the percentage of galaxies with rotational support has declined to 50%\% at low stellar mass (1091010M10^{9}-10^{10}\,M_{\odot}) and 70%\% at high stellar mass (10101011M10^{10}-10^{11}M_{\odot}). For Vrot>3σgV_{rot}\,>\,3\,\sigma_g, the percentage drops below 35%\% for all masses. From z=2z\,=\,2 to now, galaxies exhibit remarkably smooth kinematic evolution on average. All galaxies tend towards rotational support with time, and it is reached earlier in higher mass systems. This is mostly due to an average decline in σg\sigma_g by a factor of 3 since a redshift of 2, which is independent of mass. Over the same time period, VrotV_{rot} increases by a factor of 1.5 for low mass systems, but does not evolve for high mass systems. These trends in VrotV_{rot} and σg\sigma_g with time are at a fixed stellar mass and should not be interpreted as evolutionary tracks for galaxy populations. When galaxy populations are linked in time with abundance matching, not only does σg\sigma_g decline with time as before, but VrotV_{rot} strongly increases with time for all galaxy masses. This enhances the evolution in Vrot/σgV_{rot}/\sigma_g. These results indicate that z=2z\,=\,2 is a period of disk assembly, during which the strong rotational support present in today's massive disk galaxies is only just beginning to emerge.Comment: 12 pages, 8 figures, submitted to Ap

    Random Matrix Theory of a Chaotic Andreev Quantum Dot

    Full text link
    A new universality class distinct from the standard Wigner-Dyson ones is identified. This class is realized by putting a metallic quantum dot in contact with a superconductor, while applying a magnetic field so as to make the pairing field effectively vanish on average. A random-matrix description of the spectral and transport properties of such a quantum dot is proposed. The weak-localization correction to the tunnel conductance is nonzero and results from the depletion of the density of states due to the coupling with the superconductor. Semiclassically, the depletion is caused by a a mode of phase-coherent long-range propagation of electrons and holes.Comment: minor changes, 4 REVTeX page

    Calculation of the Density of States Using Discrete Variable Representation and Toeplitz Matrices

    Full text link
    A direct and exact method for calculating the density of states for systems with localized potentials is presented. The method is based on explicit inversion of the operator EHE-H. The operator is written in the discrete variable representation of the Hamiltonian, and the Toeplitz property of the asymptotic part of the obtained {\it infinite} matrix is used. Thus, the problem is reduced to the inversion of a {\it finite} matrix

    Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems

    Full text link
    An approach to experimentally exploring electronic correlation functions in mesoscopic regimes is proposed. The idea is to monitor the mesoscopic fluctuations of a tunneling current flowing between the two layers of a semiconductor double-quantum-well structure. From the dependence of these fluctuations on external parameters, such as in-plane or perpendicular magnetic fields, external bias voltages, etc., the temporal and spatial dependence of various prominent correlation functions of mesoscopic physics can be determined. Due to the absence of spatially localized external probes, the method provides a way to explore the interplay of interaction and localization effects in two-dimensional systems within a relatively unperturbed environment. We describe the theoretical background of the approach and quantitatively discuss the behavior of the current fluctuations in diffusive and ergodic regimes. The influence of both various interaction mechanisms and localization effects on the current is discussed. Finally a proposal is made on how, at least in principle, the method may be used to experimentally determine the relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include

    Field Theory of the Random Flux Model

    Full text link
    The long-range properties of the random flux model (lattice fermions hopping under the influence of maximally random link disorder) are shown to be described by a supersymmetric field theory of non-linear sigma model type, where the group GL(n|n) is the global invariant manifold. An extension to non-abelian generalizations of this model identifies connections to lattice QCD, Dirac fermions in a random gauge potential, and stochastic non-Hermitian operators.Comment: 4 pages, 1 eps figur

    Theories of Low-Energy Quasi-Particle States in Disordered d-Wave Superconductors

    Full text link
    The physics of low-energy quasi-particle excitations in disordered d-wave superconductors is a subject of ongoing intensive research. Over the last decade, a variety of conceptually and methodologically different approaches to the problem have been developed. Unfortunately, many of these theories contradict each other, and the current literature displays a lack of consensus on even the most basic physical observables. Adopting a symmetry-oriented approach, the present paper attempts to identify the origin of the disagreement between various previous approaches, and to develop a coherent theoretical description of the different low-energy regimes realized in weakly disordered d-wave superconductors. We show that, depending on the presence or absence of time-reversal invariance and the microscopic nature of the impurities, the system falls into one of four different symmetry classes. By employing a field-theoretical formalism, we derive effective descriptions of these universal regimes as descendants of a common parent field theory of Wess-Zumino-Novikov-Witten type. As well as describing the properties of each universal regime, we analyse a number of physically relevant crossover scenarios, and discuss reasons for the disagreement between previous results. We also touch upon other aspects of the phenomenology of the d-wave superconductor such as quasi-particle localization properties, the spin quantum Hall effect, and the quasi-particle physics of the disordered vortex lattice.Comment: 42 Pages, 8 postscript figures, published version with updated reference

    Theory of localization and resonance phenomena in the quantum kicked rotor

    Full text link
    We present an analytic theory of quantum interference and Anderson localization in the quantum kicked rotor (QKR). The behavior of the system is known to depend sensitively on the value of its effective Planck's constant \he. We here show that for rational values of \he/(4\pi)=p/q, it bears similarity to a disordered metallic ring of circumference qq and threaded by an Aharonov-Bohm flux. Building on that correspondence, we obtain quantitative results for the time--dependent behavior of the QKR kinetic energy, E(t~)E(\tilde t) (this is an observable which sensitively probes the system's localization properties). For values of qq smaller than the localization length ξ\xi, we obtain scaling E(t~)Δt~2E(\tilde t) \sim \Delta \tilde t^2, where Δ=2π/q\Delta=2\pi/q is the quasi--energy level spacing on the ring. This scaling is indicative of a long time dynamics that is neither localized nor diffusive. For larger values qξq\gg \xi, the functions E(t~)ξ2E(\tilde t)\to \xi^2 saturates (up to exponentially small corrections exp(q/ξ)\sim\exp(-q/\xi)), thus reflecting essentially localized behavior.Comment: 27 pages, 3 figure
    corecore