1,971 research outputs found
On the ground electronic states of copper silicide and its ions
The low-lying electronic states of SiCu, SiCu^+, and SiCu^− have been studied using a variety of high-level ab initio techniques. As expected on the basis of simple orbital occupancy and bond forming for Si(s^2p^2)+Cu(s^1) species, ^2Π_r, ^1Σ^+, and ^3Σ^− states were found to be the ground electronic states for SiCu, SiCu^+, and SiCu^−, respectively; the ^2Π_r state is not that suggested in most recent experimental studies. All of these molecules were found to be quite strongly bound although the bond lengths, bond energies, and harmonic frequencies vary slightly among them, as a result of the nonbonding character of the 2π-MO (molecular orbital) [composed almost entirely of the Si 3p-AO (atomic orbital)], the occupation of which varies from 0 to 2 within the ^1Σ^+, ^2Π_r, and ^3Σ^− series. The neutral SiCu is found to have bound excited electronic states of ^4Σ^−, ^2Δ, ^2Σ^+, and ^2Π_i symmetry lying 0.5, 1.2, 1.8, and 3.2 eV above the ^2Π_r ground state. It is possible but not yet certain that the ^2Π_i state is, in fact, the “B state” observed in the recent experimental studies by Scherer, Paul, Collier, and Saykally
Tidal modulation of ice shelf buttressing stresses
Ocean tides influence the flow of marine-terminating glaciers. Observations indicate that the large fortnightly variations in ice flow at Rutford Ice Stream in West Antarctica originate in the floating ice shelf. We show that nonlinear variations in ice shelf buttressing driven by tides can produce such fortnightly variations in ice flow. These nonlinearities in the tidal modulation of buttressing stresses can be caused by asymmetries in the contact stress from migration of the grounding line and bathymetric pinning points beneath the ice shelf. Using a simple viscoelastic model, we demonstrate that a combination of buttressing and hydrostatic stress variations can explain a diverse range of tidal variations in ice shelf flow, including the period, phase and amplitude of flow variations observed at Rutford and Bindschadler Ice Streams
z~2: An Epoch of Disk Assembly
We explore the evolution of the internal gas kinematics of star-forming
galaxies from the peak of cosmic star-formation at to today.
Measurements of galaxy rotation velocity , which quantify ordered
motions, and gas velocity dispersion , which quantify disordered
motions, are adopted from the DEEP2 and SIGMA surveys. This sample covers a
continuous baseline in redshift from to , spanning 10 Gyrs. At
low redshift, nearly all sufficiently massive star-forming galaxies are
rotationally supported (). By , the percentage of
galaxies with rotational support has declined to 50 at low stellar mass
() and 70 at high stellar mass
(). For , the percentage
drops below 35 for all masses. From to now, galaxies exhibit
remarkably smooth kinematic evolution on average. All galaxies tend towards
rotational support with time, and it is reached earlier in higher mass systems.
This is mostly due to an average decline in by a factor of 3 since a
redshift of 2, which is independent of mass. Over the same time period,
increases by a factor of 1.5 for low mass systems, but does not
evolve for high mass systems. These trends in and with
time are at a fixed stellar mass and should not be interpreted as evolutionary
tracks for galaxy populations. When galaxy populations are linked in time with
abundance matching, not only does decline with time as before, but
strongly increases with time for all galaxy masses. This enhances the
evolution in . These results indicate that is a
period of disk assembly, during which the strong rotational support present in
today's massive disk galaxies is only just beginning to emerge.Comment: 12 pages, 8 figures, submitted to Ap
Random Matrix Theory of a Chaotic Andreev Quantum Dot
A new universality class distinct from the standard Wigner-Dyson ones is
identified. This class is realized by putting a metallic quantum dot in contact
with a superconductor, while applying a magnetic field so as to make the
pairing field effectively vanish on average. A random-matrix description of the
spectral and transport properties of such a quantum dot is proposed. The
weak-localization correction to the tunnel conductance is nonzero and results
from the depletion of the density of states due to the coupling with the
superconductor. Semiclassically, the depletion is caused by a a mode of
phase-coherent long-range propagation of electrons and holes.Comment: minor changes, 4 REVTeX page
Calculation of the Density of States Using Discrete Variable Representation and Toeplitz Matrices
A direct and exact method for calculating the density of states for systems
with localized potentials is presented. The method is based on explicit
inversion of the operator . The operator is written in the discrete
variable representation of the Hamiltonian, and the Toeplitz property of the
asymptotic part of the obtained {\it infinite} matrix is used. Thus, the
problem is reduced to the inversion of a {\it finite} matrix
Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems
An approach to experimentally exploring electronic correlation functions in
mesoscopic regimes is proposed. The idea is to monitor the mesoscopic
fluctuations of a tunneling current flowing between the two layers of a
semiconductor double-quantum-well structure. From the dependence of these
fluctuations on external parameters, such as in-plane or perpendicular magnetic
fields, external bias voltages, etc., the temporal and spatial dependence of
various prominent correlation functions of mesoscopic physics can be
determined. Due to the absence of spatially localized external probes, the
method provides a way to explore the interplay of interaction and localization
effects in two-dimensional systems within a relatively unperturbed environment.
We describe the theoretical background of the approach and quantitatively
discuss the behavior of the current fluctuations in diffusive and ergodic
regimes. The influence of both various interaction mechanisms and localization
effects on the current is discussed. Finally a proposal is made on how, at
least in principle, the method may be used to experimentally determine the
relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include
Field Theory of the Random Flux Model
The long-range properties of the random flux model (lattice fermions hopping
under the influence of maximally random link disorder) are shown to be
described by a supersymmetric field theory of non-linear sigma model type,
where the group GL(n|n) is the global invariant manifold. An extension to
non-abelian generalizations of this model identifies connections to lattice
QCD, Dirac fermions in a random gauge potential, and stochastic non-Hermitian
operators.Comment: 4 pages, 1 eps figur
Theories of Low-Energy Quasi-Particle States in Disordered d-Wave Superconductors
The physics of low-energy quasi-particle excitations in disordered d-wave
superconductors is a subject of ongoing intensive research. Over the last
decade, a variety of conceptually and methodologically different approaches to
the problem have been developed. Unfortunately, many of these theories
contradict each other, and the current literature displays a lack of consensus
on even the most basic physical observables. Adopting a symmetry-oriented
approach, the present paper attempts to identify the origin of the disagreement
between various previous approaches, and to develop a coherent theoretical
description of the different low-energy regimes realized in weakly disordered
d-wave superconductors. We show that, depending on the presence or absence of
time-reversal invariance and the microscopic nature of the impurities, the
system falls into one of four different symmetry classes. By employing a
field-theoretical formalism, we derive effective descriptions of these
universal regimes as descendants of a common parent field theory of
Wess-Zumino-Novikov-Witten type. As well as describing the properties of each
universal regime, we analyse a number of physically relevant crossover
scenarios, and discuss reasons for the disagreement between previous results.
We also touch upon other aspects of the phenomenology of the d-wave
superconductor such as quasi-particle localization properties, the spin quantum
Hall effect, and the quasi-particle physics of the disordered vortex lattice.Comment: 42 Pages, 8 postscript figures, published version with updated
reference
Theory of localization and resonance phenomena in the quantum kicked rotor
We present an analytic theory of quantum interference and Anderson
localization in the quantum kicked rotor (QKR). The behavior of the system is
known to depend sensitively on the value of its effective Planck's constant
\he. We here show that for rational values of \he/(4\pi)=p/q, it bears
similarity to a disordered metallic ring of circumference and threaded by
an Aharonov-Bohm flux. Building on that correspondence, we obtain quantitative
results for the time--dependent behavior of the QKR kinetic energy, (this is an observable which sensitively probes the system's localization
properties). For values of smaller than the localization length , we
obtain scaling , where is
the quasi--energy level spacing on the ring. This scaling is indicative of a
long time dynamics that is neither localized nor diffusive. For larger values
, the functions saturates (up to exponentially
small corrections ), thus reflecting essentially localized
behavior.Comment: 27 pages, 3 figure
- …
