75 research outputs found
Stylistic gait synthesis based on hidden Markov models
peer reviewedIn this work we present an expressive gait synthesis system based on hidden Markov models (HMMs), following and modifying a procedure originally developed for speaking style adaptation, in speech synthesis. A large database of neutral motion capture walk sequences was used to train an HMM of average walk. The model was then used for automatic adaptation to a particular style of walk using only a small amount of training data from the target style. The open source toolkit that we adapted for motion modeling also enabled us to take into account the dynamics of the data and to model accurately the duration of each HMM state. We also address the assessment issue and propose a procedure for qualitative user evaluation of the synthesized sequences. Our tests show that the style of these sequences can easily be recognized and look natural to the evaluators
Mage - Reactive articulatory feature control of HMM-based parametric speech synthesis
In this paper, we present the integration of articulatory control into MAGE, a framework for realtime and interactive (reactive) parametric speech synthesis using hidden Markov models (HMMs). MAGE is based on the speech synthesis engine from HTS and uses acoustic features (spectrum and f0) to model and synthesize speech. In this work, we replace the standard acoustic models with models combining acoustic and articulatory features, such as tongue, lips and jaw positions. We then use feature-space-switched articulatory-to-acoustic regression matrices to enable us to control the spectral acoustic features by manipulating the articulatory features. Combining this synthesis model with MAGE allows us to interactively and intuitively modify phones synthesized in real time, for example transforming one phone into another, by controlling the configuration of the articulators in a visual display. Index Terms: speech synthesis, reactive, articulators 1
Slowdio: Audio Time-Scaling for Slow Motion Sports Videos
Today, most of sports television broadcasts feature slow motion playbacks. Until now, these have been silent. In this thesis, we present several state of the art methods for time-scaling of audio signals and study their behavior when applied to a new database of sports recordings. We argue that the underlying models used to develop these methods do not correspond to the noisy audio signals recorded during sports events. Besides, transient sounds need to be detected and processed separately from the rest of the signal, which proves difficult in the typical noisy environments of sports events. Based on hypotheses that better fit the actual content of these recordings, we develop a new method that produces convincing time-scaled audio signals while implicitly handling transients. Furthermore, we introduce a new time-scaling approach for harmonic sounds such as speech and single-instrument music recordings
Reactive Statistical Mapping: Towards the Sketching of Performative Control with Data
Part 1: Fundamental IssuesInternational audienceThis paper presents the results of our participation to the ninth eNTERFACE workshop on multimodal user interfaces. Our target for this workshop was to bring some technologies currently used in speech recognition and synthesis to a new level, i.e. being the core of a new HMM-based mapping system. The idea of statistical mapping has been investigated, more precisely how to use Gaussian Mixture Models and Hidden Markov Models for realtime and reactive generation of new trajectories from inputted labels and for realtime regression in a continuous-to-continuous use case. As a result, we have developed several proofs of concept, including an incremental speech synthesiser, a software for exploring stylistic spaces for gait and facial motion in realtime, a reactive audiovisual laughter and a prototype demonstrating the realtime reconstruction of lower body gait motion strictly from upper body motion, with conservation of the stylistic properties. This project has been the opportunity to formalise HMM-based mapping, integrate various of these innovations into the Mage library and explore the development of a realtime gesture recognition tool
- …
