1,070 research outputs found
Progress update of NASA's free-piston Stirling space power converter technology project
A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC
Closed loop spray cooling apparatus
A closed loop apparatus for spraying coolant against the back of a radiation target is described. The coolant was circulated through a closed loop with a bubble of inert gas being maintained around the spray. Mesh material was disposed between the bubble and the surface of the liquid coolant which was below the bubble at a predetermined level. In a second embodiment, no inert gas was used, the bubble consisting of a vapor produced when the coolant was sprayed against the target
Advanced information processing system for advanced launch system: Avionics architecture synthesis
The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described
Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-Organising Maps
With the advent of large scale surveys the manual analysis and classification
of individual radio source morphologies is rendered impossible as existing
approaches do not scale. The analysis of complex morphological features in the
spatial domain is a particularly important task. Here we discuss the challenges
of transferring crowdsourced labels obtained from the Radio Galaxy Zoo project
and introduce a proper transfer mechanism via quantile random forest
regression. By using parallelized rotation and flipping invariant Kohonen-maps,
image cubes of Radio Galaxy Zoo selected galaxies formed from the FIRST radio
continuum and WISE infrared all sky surveys are first projected down to a
two-dimensional embedding in an unsupervised way. This embedding can be seen as
a discretised space of shapes with the coordinates reflecting morphological
features as expressed by the automatically derived prototypes. We find that
these prototypes have reconstructed physically meaningful processes across two
channel images at radio and infrared wavelengths in an unsupervised manner. In
the second step, images are compared with those prototypes to create a
heat-map, which is the morphological fingerprint of each object and the basis
for transferring the user generated labels. These heat-maps have reduced the
feature space by a factor of 248 and are able to be used as the basis for
subsequent ML methods. Using an ensemble of decision trees we achieve upwards
of 85.7% and 80.7% accuracy when predicting the number of components and peaks
in an image, respectively, using these heat-maps. We also question the
currently used discrete classification schema and introduce a continuous scale
that better reflects the uncertainty in transition between two classes, caused
by sensitivity and resolution limits
Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis
Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions
Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview
Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation
Characteristics of long-duration inhibitory postsynaptic potentials in rat neocortical neurons in vitro
1. The characteristics of long-duration inhibitory postsynaptic potentials (l-IPSPs) which are evoked in rat frontal neocortical neurons by local electrical stimulation were investigated with intracellular recordings from anin vitro slice preparation.
2. Stimulation with suprathreshold intensities evoked l-IPSPs with typical durations of 600–900 msec at resting membrane potential. Conductance increases of 15–60% were measured at the peak amplitude of l-IPSPs (150–250 msec poststimulus).
3. The duration of the conductance increases during l-IPSPs displayed a significant voltage dependence, decreasing as the membrance potential was depolarized and increasing with hyperpolarization.
4. The reversal potential of l-IPSPs is significantly altered by reductions in the extracellular potassium concentration. Therefore it is concluded that l-IPSPs in rat neocortical neurons are generated by the activation of a potassium conductance.
5. l-IPSPs exhibit stimulation fatigue. Stimulation with a frequency of 1 Hz produces a complete fatigue of the conductance increases during l-IPSPs after approximately 20 consecutive stimuli. Recovery from this fatigue requires minutes.
6. l-IPSPs are not blocked by bicuculline but are blocked by baclofen
The perseverance of Pacioli's goods inventory accounting system
This paper details sources of the 'undoubtedly strange' (Yamey, 1994a, p.119) system of goods inventory records described in Pacioli’s 1494 bookkeeping treatise and traces the longevity and widespread use of this early perpetual inventory recording (EPIR) system in English language texts. By doing so and contrasting this system with the bookkeeping treatment of modern texts, it is shown that the EPIR system persisted as the dominant form of goods inventory accounting for between 400 and 500 years and that the reasons for its demise are worthy of further consideration and research
Long-Term Potentiation: One Kind or Many?
Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds
Predictors of CNS Injury as Measured by Proton Magnetic Resonance Spectroscopy in the Setting of Chronic HIV infection and CART
The reasons for persistent brain dysfunction in chronically HIV-infected persons on stable combined antiretroviral therapies (CART) remain unclear. Host and viral factors along with their interactions were examined in 260 HIV-infected subjects who underwent magnetic resonance spectroscopy (MRS) Metabolite concentrations (NAA/Cr, Cho/Cr, MI/Cr and Glx/Cr) were measured in the basal ganglia, the frontal white matter and grey matter and the best predictive models were selected using a bootstrap-enhanced Akaike Information Criterion (AIC). Depending on the metabolite and brain region, age, race, HIV RNA concentration, ADC stage, duration of HIV infection, nadir CD4, and/or their interactions were predictive of metabolite concentrations, particularly the basal ganglia NAA/Cr and the mid-frontal NAA/Cr and Glx/Cr whereas current CD4 and the CPE index rarely or did not predict these changes. These results show for the first time that host and viral factors related to both current and past HIV status contribute to persisting cerebral metabolite abnormalities and provide a framework for further understanding neurological injury in the setting of chronic and stable disease
- …
