5,339 research outputs found
Differential Subordinations Involving Generalized Bessel Functions
In this paper our aim is to present some subordination and superordination
results, by using an operator, which involves the normalized form of the
generalized Bessel functions of first kind. These results are obtained by
investigating some appropriate classes of admissible functions. We obtain also
some sandwich-type results and we point out various known or new special cases
of our main results.Comment: 15 pages, accepted in Bulletin of the Malaysian Mathematical Sciences
Societ
Global transcript and phenotypic analysis of yeast cells expressing Ssa1, Ssa2, Ssa3 or Ssa4 as sole source of cytosolic Hsp70-Ssa chaperone activity.
BACKGROUND: Cytosolic Hsp70 is a ubiquitous molecular chaperone that is involved in responding to a variety of cellular stresses. A major function of Hsp70 is to prevent the aggregation of denatured proteins by binding to exposed hydrophobic regions and preventing the accumulation of amorphous aggregates. To gain further insight into the functional redundancy and specialisation of the highly homologous yeast Hsp70-Ssa family we expressed each of the individual Ssa proteins as the sole source of Hsp70 in the cell and assessed phenotypic differences in prion propagation and stress resistance. Additionally we also analysed the global gene expression patterns in yeast strains expressing individual Ssa proteins, using microarray and RT-qPCR analysis. RESULTS: We confirm and extend previous studies demonstrating that cells expressing different Hsp70-Ssa isoforms vary in their ability to propagate the yeast [PSI+] prion, with Ssa3 being the most proficient. Of the four Ssa family members the heat inducible isoforms are more proficient in acquiring thermotolerance and we show a greater requirement than was previously thought, for cellular processes in addition to the traditional Hsp104 protein disaggregase machinery, in acquiring such thermotolerance. Cells expressing different Hsp70-Ssa isoforms also display differences in phenotypic response to exposure to cell wall damaging and oxidative stress agents, again with the heat inducible isoforms providing better protection than constitutive isoforms. We assessed global transcriptome profiles for cells expressing individual Hsp70-Ssa isoforms as the sole source of cytosolic Hsp70, and identified a significant difference in cellular gene expression between these strains. Differences in gene expression profiles provide a rationale for some phenotypic differences we observed in this study. We also demonstrate a high degree of correlation between microarray data and RT-qPCR analysis for a selection of genes. CONCLUSIONS: The Hsp70-Ssa family provide both redundant and variant-specific functions within the yeast cell. Yeast cells expressing individual members of the Hsp70-Ssa family as the sole source of Ssa protein display differences in global gene expression profiles. These changes in global gene expression may contribute significantly to the phenotypic differences observed between the Hsp70-Ssa family members
On the Beaming of Gluonic Fields at Strong Coupling
We examine the conditions for beaming of the gluonic field sourced by a heavy
quark in strongly-coupled conformal field theories, using the AdS/CFT
correspondence. Previous works have found that, contrary to naive expectations,
it is possible to set up collimated beams of gluonic radiation despite the
strong coupling. We show that, on the gravity side of the correspondence, this
follows directly (for arbitrary quark motion, and independently of any
approximations) from the fact that the string dual to the quark remains
unexpectedly close to the AdS boundary whenever the quark moves
ultra-relativistically. We also work out the validity conditions for a related
approximation scheme that proposed to explain the beaming effect though the
formation of shock waves in the bulk fields emitted by the string. We find that
these conditions are fulfilled in the case of ultra-relativistic uniform
circular motion that motivated the proposal, but unfortunately do not hold for
much more general quark trajectories.Comment: 1+33 pages, 2 figure
Population genetics data for 21 autosomal STR loci for United Arab Emirates (UAE) population using next generation multiplex STR kit
MFV Reductions of MSSM Parameter Space
The 100+ free parameters of the minimal supersymmetric standard model (MSSM)
make it computationally difficult to compare systematically with data,
motivating the study of specific parameter reductions such as the cMSSM and
pMSSM. Here we instead study the reductions of parameter space implied by using
minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with
a view towards systematically building in constraints on flavour-violating
physics. Within this framework the space of parameters is reduced by expanding
soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a
24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42
respectively), depending on the order kept in the expansion. We provide a
Bayesian global fit to data of the MSSM-30 parameter set to show that this is
manageable with current tools. We compare the MFV reductions to the
19-parameter pMSSM choice and show that the pMSSM is not contained as a subset.
The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs
boson and with multi-TeV sparticles.Comment: 2nd version, minor comments and references added, accepted for
publication in JHE
Climate Change and Future Long Term Trends of Rainfall at North-eastern Part of Iraq
Iraq is facing water shortage problem despite the presence of the Tigris and Euphrates Rivers. In this research, long rainfall trends up to the year 2099 were studied in Sulaimani city northeast Iraq to give an idea about future prospects. The medium high (A2) and medium low B2 scenarios have been used for purpose of this study as they are more likely than others scenarios, that beside the fact that no climate modeling canter has performed GCM (global climate model) simulations for more than a few emissions scenarios (HadCM3 has only these two scenarios) otherwise pattern scaling can be used for generating different scenarios which entail a huge uncertainty. The results indicate that the average annual rainfall shows a significant downward trend for both A2 and B2 scenarios. In addition, winter projects increase/decrease in the daily rainfall statistics of wet days, the spring season show very slight drop and no change for both scenarios. However, both summer and autumn shows a significant reduction in maximum rainfall value especially in 2080s while the other statistics remain nearly the same. The extremes events are to decrease slightly in 2080s with highest decrease associated with A2 scenario. This is due to the fact that rainfall under scenario A2 is more significant than under scenario B2. The return period of a certain rainfall will increase in the future when a present storm of 20 year could occur once every 43 year in the 2080s. An increase in the frequency of extreme rainfall depends on several factors such as the return period, season of the year, the period considered as well as the emission scenario used
The Energy Loss of a Heavy Quark Moving in a Viscous Fluid
To study the rate of energy and momentum loss of a heavy quark in QGP,
specifically in the hydrodynamic regime, we use fluid/gravity duality and
construct a perturbative procedure to find the string solution in gravity side.
We show that by this construction the drag force exerted on the quark can be
computed perturbatively, order by order in a boundary derivative expansion. At
ideal order, our result is just the drag force exerted on a moving quark in
thermal plasma with thermodynamics variables promoted to become local functions
of space and time. Furthermore, we apply this procedure to a transverse quark
in Bjorken flow and compute the first-derivative corrections, namely the
viscous corrections, to the drag force.Comment: 33 pages, 6 figures, references added v5: Some correction
A Genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology
We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of "amyloid" transgenic mice (mutant human APP, PSEN1, or APP/PSEN1) and "TAU" transgenic mice (mutant human MAPT gene). Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS) hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org
Back reaction effects on the dynamics of heavy probes in heavy quark cloud
We holographically study the effect of back reaction on the hydrodynamical
properties of strongly coupled super Yang-Mills (SYM) thermal
plasma. The back reaction we consider arises from the presence of static heavy
quarks uniformly distributed over SYM plasma. In order to
study the hydrodynamical properties, we use heavy quark as well as heavy
quark-antiquark bound state as probes and compute the jet quenching parameter,
screening length and binding energy. We also consider the rotational dynamics
of heavy probe quark in the back-reacted plasma and analyse associated energy
loss. We observe that the presence of back reaction enhances the energy-loss in
the thermal plasma. Finally, we show that there is no effect of angular drag on
the rotational motion of quark-antiquark bound state probing the back reacted
thermal plasma.Comment: 29 pages, 21 figure
Batch and continuous removal of heavy metals from industrial effluents using microbial consortia
Bio-removal of heavy metals, using microbial biomass, increasingly attracting scientific attention due to their significant role in purification of different types of wastewaters making it reusable. Heavy metals were reported to have a significant hazardous effect on human health, and while the conventional methods of removal were found to be insufficient; microbial biosorption was found to be the most suitable alternative. In this work, an immobilized microbial consortium was generated using Statistical Design of Experiment (DOE) as a robust method to screen the efficiency of the microbial isolates in heavy metal removal process. This is the first report of applying Statistical DOE to screen the efficacy of microbial isolates to remove heavy metals instead of screening normal variables. A mixture of bacterial biomass and fungal spores was used both in batch and continuous modes to remove Chromium and Iron ions from industrial effluents. Bakery yeast was applied as a positive control, and all the obtained biosorbent isolates showed more significant efficiency in heavy metal removal. In batch mode, the immobilized biomass was enclosed in a hanged tea bag-like cellulose membrane to facilitate the separation of the biosorbent from the treated solutions, which is one of the main challenges in applying microbial biosorption at large scale. The continuous flow removal was performed using fixed bed mini-bioreactor, and the process was optimized in terms of pH (6) and flow rates (1 ml/min) using Response Surface Methodology. The most potential biosorbent microbes were identified and characterized. The generated microbial consortia and process succeeded in the total removal of Chromium ions and more than half of Iron ions both from standard solutions and industrial effluents
- …
