15 research outputs found
Both Functional LTβ Receptor and TNF Receptor 2 Are Required for the Development of Experimental Cerebral Malaria
BACKGROUND: TNF-related lymphotoxin α (LTα) is essential for the development of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM). The pathway involved has been attributed to TNFR2. Here we show a second arm of LTα-signaling essential for ECM development through LTβ-R, receptor of LTα1β2 heterotrimer. METHODOLOGY/PRINCIPAL FINDINGS: LTβR deficient mice did not develop the neurological signs seen in PbA induced ECM but died at three weeks with high parasitaemia and severe anemia like LTαβ deficient mice. Resistance of LTαβ or LTβR deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and angiography, associated with lack of microvascular obstruction, while wild-type mice developed distinct microvascular pathology. Recruitment and activation of perforin(+) CD8(+) T cells, and their ICAM-1 expression were clearly attenuated in the brain of resistant mice. An essential contribution of LIGHT, another LTβR ligand, could be excluded, as LIGHT deficient mice rapidly succumbed to ECM. CONCLUSIONS/SIGNIFICANCE: LTβR expressed on radioresistant resident stromal, probably endothelial cells, rather than hematopoietic cells, are essential for the development of ECM, as assessed by hematopoietic reconstitution experiment. Therefore, the data suggest that both functional LTβR and TNFR2 signaling are required and non-redundant for the development of microvascular pathology resulting in fatal ECM
Colonic patch and colonic SILT development are independent and differentially regulated events
Organogenesis of lymphoid tissues.
The development of lymphoid organs depends on the correct expression of several molecules within a defined timeframe during ontogeny. Although this is an extremely complex process, with each secondary lymphoid tissue requiring subtly different signals, a common framework for lymphoid development is beginning to emerge. Drawing on studies of lymph nodes, Peyer's patches and nasal-associated lymphoid tissue, an integrative model of lymphoid-tissue development, involving adhesion molecules, cytokines and chemokines, which emphasizes the role of interactions between CD3-CD4+CD45+ 'inducer' cells and VCAM1+ICAM1+ stromal 'organizer' cells is presented
Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway?
The intestinal immune system faces an extraordinary challenge from the large numbers of commensal bacteria and potential pathogens that are restrained by only a single layer of epithelial cells. Here, I discuss evidence that the intestinal immune system develops an extensive network of inducible, reversible lymphoid tissues that contributes to the vital equilibrium between the gut and the bacterial flora. I propose that this network is induced by cryptopatches, which are small clusters of dendritic cells and lymphoid cells that are identical to fetal inducers of lymph-node and Peyer's-patch development
