945 research outputs found

    Identification of disease-causing genes using microarray data mining and gene ontology

    Get PDF
    Background: One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes. Methods: We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results. Results: The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth. Conclusions: The proposed method addresses the weakness of conventional methods by adding a redundancy reduction stage and utilizing Gene Ontology information. It predicts marker genes for colon, DLBCL and prostate cancer with a high accuracy. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help in the search for a cure for cancers

    The ansamycin antibiotic, rifamycin SV, inhibits BCL6 transcriptional repression and forms a complex with the BCL6-BTB/POZ domain

    Get PDF
    BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ~40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent the association of SMRT with BCL6, inhibit transcriptional repression and cause apoptosis of lymphoma cells in vitro and in vivo. In order to discover compounds, which have the potential to be developed into BCL6 inhibitors, we screened a natural product library. The ansamycin antibiotic, rifamycin SV, inhibited BCL6 transcriptional repression and NMR spectroscopy confirmed a direct interaction between rifamycin SV and BCL6. To further determine the characteristics of compounds binding to BCL6-POZ we analyzed four other members of this family and showed that rifabutin, bound most strongly. An X-ray crystal structure of the rifabutin-BCL6 complex revealed that rifabutin occupies a partly non-polar pocket making interactions with tyrosine58, asparagine21 and arginine24 of the BCL6-POZ domain. Importantly these residues are also important for the interaction of BLC6 with SMRT. This work demonstrates a unique approach to developing a structure activity relationship for a compound that will form the basis of a therapeutically useful BCL6 inhibitor

    Gene expression profiling identifies distinct molecular subgroups of leiomyosarcoma with clinical relevance

    Get PDF
    YesBackground: Soft tissue sarcomas are heterogeneous and a major complication in their management is that the existing classification scheme is not definitive and is still evolving. Leiomyosarcomas, a major histologic category of soft tissue sarcomas, are malignant tumours displaying smooth muscle differentiation. Although defined as a single group, they exhibit a wide range of clinical behaviour. We aimed to carry out molecular classification to identify new molecular subgroups with clinical relevance. Methods: We used gene expression profiling on 20 extra-uterine leiomyosarcomas and cross-study analyses for molecular classification of leiomyosarcomas. Clinical significance of the subgroupings was investigated. Results: We have identified two distinct molecular subgroups of leiomyosarcomas. One group was characterised by high expression of 26 genes that included many genes from the sub-classification gene cluster proposed by Nielsen et al. These sub-classification genes include genes that have importance structurally, as well as in cell signalling. Notably, we found a statistically significant association of the subgroupings with tumour grade. Further refinement led to a group of 15 genes that could recapitulate the tumour subgroupings in our data set and in a second independent sarcoma set. Remarkably, cross-study analyses suggested that these molecular subgroups could be found in four independent data sets, providing strong support for their existence. Conclusions: Our study strongly supported the existence of distinct leiomyosarcoma molecular subgroups, which have clinical association with tumour grade. Our findings will aid in advancing the classification of leiomyosarcomas and lead to more individualised and better management of the disease.Alexander Boag Sarcoma Fund

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Phenotype Prediction Using Regularized Regression on Genetic Data in the DREAM5 Systems Genetics B Challenge

    Get PDF
    A major goal of large-scale genomics projects is to enable the use of data from high-throughput experimental methods to predict complex phenotypes such as disease susceptibility. The DREAM5 Systems Genetics B Challenge solicited algorithms to predict soybean plant resistance to the pathogen Phytophthora sojae from training sets including phenotype, genotype, and gene expression data. The challenge test set was divided into three subcategories, one requiring prediction based on only genotype data, another on only gene expression data, and the third on both genotype and gene expression data. Here we present our approach, primarily using regularized regression, which received the best-performer award for subchallenge B2 (gene expression only). We found that despite the availability of 941 genotype markers and 28,395 gene expression features, optimal models determined by cross-validation experiments typically used fewer than ten predictors, underscoring the importance of strong regularization in noisy datasets with far more features than samples. We also present substantial analysis of the training and test setup of the challenge, identifying high variance in performance on the gold standard test sets.National Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Defense Science and Engineering Graduate Fellowshi

    The Marker State Space (MSS) Method for Classifying Clinical Samples

    Get PDF
    The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and diseases. One approach to account for the diversity is to use multiple markers to classify patients, based on the concept that each individual marker contributes information from its respective subclass of patients. Here we present a new strategy for developing biomarker panels that accounts for completely distinct patient subclasses. Marker State Space (MSS) defines "marker states" based on all possible patterns of high and low values among a panel of markers. Each marker state is defined as either a case state or a control state, and a sample is classified as case or control based on the state it occupies. MSS was used to define multi-marker panels that were robust in cross validation and training-set/test-set analyses and that yielded similar classification accuracy to several other classification algorithms. A three-marker panel for discriminating pancreatic cancer patients from control subjects revealed subclasses of patients based on distinct marker states. MSS provides a straightforward approach for modeling highly divergent subclasses of patients, which may be adaptable for diverse applications. © 2013 Fallon et al

    Avian Pathogenic Escherichia coli (APEC) Infection Alters Bone Marrow Transcriptome in Chickens

    Get PDF
    Avian pathogenic Escherichia coli (APEC) is a major cause of disease impacting animal health. The bone marrow is the reservoir of immature immune cells; however, it has not been examined to date for gene expression related to developmental changes (cell differentiation, maturation, programming) after APEC infection. Here, we study gene expression in the bone marrow between infected and non-infected animals, and between infected animals with mild (resistant) versus severe (susceptible) pathology, at two times post-infection. We sequenced 24 bone marrow RNA libraries generated from the six different treatment groups with four replicates each, and obtained an average of 22 million single-end, 100-bp reads per library. Genes were detected as differentially expressed (DE) between APEC treatments (mild pathology, severe pathology, and mock-challenged) at a given time point, or DE between 1 and 5 days post-infection (dpi) within the same treatment group. Results demonstrate that many immune cells, genes and related pathways are key contributors to the different responses to APEC infection between susceptible and resistant birds and between susceptible and non-challenged birds, at both times post-infection. In susceptible birds, lymphocyte differentiation, proliferation, and maturation were greatly impaired, while the innate and adaptive immune responses, including dendritic cells, monocytes and killer cell activity, TLR- and NOD-like receptor signaling, as well as T helper cells and many cytokine activities, were markedly enhanced. The resistant birds’ immune system, however, was similar to that of non-challenged birds. The DE genes in the immune cells and identified signaling models are representative of activation and resolution of infection in susceptible birds at both post-infection days. These novel results characterizing transcriptomic response to APEC infection reveal that there is combinatorial activity of multiple genes controlling myeloid cells, and B and T cell lymphopoiesis, as well as immune responses occurring in the bone marrow in these early stages of response to infection

    Genomic approaches to research in lung cancer

    Get PDF
    The medical research community is experiencing a marked increase in the amount of information available on genomic sequences and genes expressed by humans and other organisms. This information offers great opportunities for improving our understanding of complex diseases such as lung cancer. In particular, we should expect to witness a rapid increase in the rate of discovery of genes involved in lung cancer pathogenesis and we should be able to develop reliable molecular criteria for classifying lung cancers and predicting biological properties of individual tumors. Achieving these goals will require collaboration by scientists with specialized expertise in medicine, molecular biology, and decision-based statistical analysis

    Trends in HIV/AIDS morbidity and mortality in Eastern Mediterranean countries, 1990–2015: findings from the Global Burden of Disease 2015 study

    Get PDF
    OBJECTIVES: We used the results of the Global Burden of Disease 2015 study to estimate trends of HIV/AIDS burden in Eastern Mediterranean Region (EMR) countries between 1990 and 2015. METHODS: Tailored estimation methods were used to produce final estimates of mortality. Years of life lost (YLLs) were calculated by multiplying the mortality rate by population by age-specific life expectancy. Years lived with disability (YLDs) were computed as the prevalence of a sequela multiplied by its disability weight. RESULTS: In 2015, the rate of HIV/AIDS deaths in the EMR was 1.8 (1.4–2.5) per 100,000 population, a 43% increase from 1990 (0.3; 0.2–0.8). Consequently, the rate of YLLs due to HIV/AIDS increased from 15.3 (7.6–36.2) per 100,000 in 1990 to 81.9 (65.3–114.4) in 2015. The rate of YLDs increased from 1.3 (0.6–3.1) in 1990 to 4.4 (2.7–6.6) in 2015. CONCLUSIONS: HIV/AIDS morbidity and mortality increased in the EMR since 1990. To reverse this trend and achieve epidemic control, EMR countries should strengthen HIV surveillance, and scale up HIV antiretroviral therapy and comprehensive prevention services
    corecore