2,037 research outputs found
Global estimation of child mortality using a Bayesian B-spline Bias-reduction model
Estimates of the under-five mortality rate (U5MR) are used to track progress
in reducing child mortality and to evaluate countries' performance related to
Millennium Development Goal 4. However, for the great majority of developing
countries without well-functioning vital registration systems, estimating the
U5MR is challenging due to limited data availability and data quality issues.
We describe a Bayesian penalized B-spline regression model for assessing levels
and trends in the U5MR for all countries in the world, whereby biases in data
series are estimated through the inclusion of a multilevel model to improve
upon the limitations of current methods. B-spline smoothing parameters are also
estimated through a multilevel model. Improved spline extrapolations are
obtained through logarithmic pooling of the posterior predictive distribution
of country-specific changes in spline coefficients with observed changes on the
global level. The proposed model is able to flexibly capture changes in U5MR
over time, gives point estimates and credible intervals reflecting potential
biases in data series and performs reasonably well in out-of-sample validation
exercises. It has been accepted by the United Nations Inter-agency Group for
Child Mortality Estimation to generate estimates for all member countries.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS768 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Probabilistic projections of HIV prevalence using Bayesian melding
The Joint United Nations Programme on HIV/AIDS (UNAIDS) has developed the
Estimation and Projection Package (EPP) for making national estimates and
short-term projections of HIV prevalence based on observed prevalence trends at
antenatal clinics. Assessing the uncertainty about its estimates and
projections is important for informed policy decision making, and we propose
the use of Bayesian melding for this purpose. Prevalence data and other
information about the EPP model's input parameters are used to derive a
probabilistic HIV prevalence projection, namely a probability distribution over
a set of future prevalence trajectories. We relate antenatal clinic prevalence
to population prevalence and account for variability between clinics using a
random effects model. Predictive intervals for clinic prevalence are derived
for checking the model. We discuss predictions given by the EPP model and the
results of the Bayesian melding procedure for Uganda, where prevalence peaked
at around 28% in 1990; the 95% prediction interval for 2010 ranges from 2% to
7%.Comment: Published at http://dx.doi.org/10.1214/07-AOAS111 in the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Bayesian Population Projections for the United Nations
The United Nations regularly publishes projections of the populations of all
the world's countries broken down by age and sex. These projections are the de
facto standard and are widely used by international organizations, governments
and researchers. Like almost all other population projections, they are
produced using the standard deterministic cohort-component projection method
and do not yield statements of uncertainty. We describe a Bayesian method for
producing probabilistic population projections for most countries which are
projections that the United Nations could use. It has at its core Bayesian
hierarchical models for the total fertility rate and life expectancy at birth.
We illustrate the method and show how it can be extended to address concerns
about the UN's current assumptions about the long-term distribution of
fertility. The method is implemented in the R packages bayesTFR, bayesLife,
bayesPop and bayesDem.Comment: Published in at http://dx.doi.org/10.1214/13-STS419 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Probabilistic projections of HIV prevalence using Bayesian melding
The Joint United Nations Programme on HIV/AIDS (UNAIDS) has developed the
Estimation and Projection Package (EPP) for making national estimates and
short-term projections of HIV prevalence based on observed prevalence trends at
antenatal clinics. Assessing the uncertainty about its estimates and
projections is important for informed policy decision making, and we propose
the use of Bayesian melding for this purpose. Prevalence data and other
information about the EPP model's input parameters are used to derive a
probabilistic HIV prevalence projection, namely a probability distribution over
a set of future prevalence trajectories. We relate antenatal clinic prevalence
to population prevalence and account for variability between clinics using a
random effects model. Predictive intervals for clinic prevalence are derived
for checking the model. We discuss predictions given by the EPP model and the
results of the Bayesian melding procedure for Uganda, where prevalence peaked
at around 28% in 1990; the 95% prediction interval for 2010 ranges from 2% to
7%.Comment: Published at http://dx.doi.org/10.1214/07-AOAS111 in the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Verslag van een bezoek aan het Scottish horticultural research institute te Invergowrie : mei 1976
Verslag van een studiereis naar de proefstations in Melle (Vlaanderen) en Landerneau (Bretagne), 19 - 4 - 1971 tot 24 - 4 - 1971
- …
