2,037 research outputs found

    Global estimation of child mortality using a Bayesian B-spline Bias-reduction model

    Full text link
    Estimates of the under-five mortality rate (U5MR) are used to track progress in reducing child mortality and to evaluate countries' performance related to Millennium Development Goal 4. However, for the great majority of developing countries without well-functioning vital registration systems, estimating the U5MR is challenging due to limited data availability and data quality issues. We describe a Bayesian penalized B-spline regression model for assessing levels and trends in the U5MR for all countries in the world, whereby biases in data series are estimated through the inclusion of a multilevel model to improve upon the limitations of current methods. B-spline smoothing parameters are also estimated through a multilevel model. Improved spline extrapolations are obtained through logarithmic pooling of the posterior predictive distribution of country-specific changes in spline coefficients with observed changes on the global level. The proposed model is able to flexibly capture changes in U5MR over time, gives point estimates and credible intervals reflecting potential biases in data series and performs reasonably well in out-of-sample validation exercises. It has been accepted by the United Nations Inter-agency Group for Child Mortality Estimation to generate estimates for all member countries.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS768 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Probabilistic projections of HIV prevalence using Bayesian melding

    Full text link
    The Joint United Nations Programme on HIV/AIDS (UNAIDS) has developed the Estimation and Projection Package (EPP) for making national estimates and short-term projections of HIV prevalence based on observed prevalence trends at antenatal clinics. Assessing the uncertainty about its estimates and projections is important for informed policy decision making, and we propose the use of Bayesian melding for this purpose. Prevalence data and other information about the EPP model's input parameters are used to derive a probabilistic HIV prevalence projection, namely a probability distribution over a set of future prevalence trajectories. We relate antenatal clinic prevalence to population prevalence and account for variability between clinics using a random effects model. Predictive intervals for clinic prevalence are derived for checking the model. We discuss predictions given by the EPP model and the results of the Bayesian melding procedure for Uganda, where prevalence peaked at around 28% in 1990; the 95% prediction interval for 2010 ranges from 2% to 7%.Comment: Published at http://dx.doi.org/10.1214/07-AOAS111 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayesian Population Projections for the United Nations

    Full text link
    The United Nations regularly publishes projections of the populations of all the world's countries broken down by age and sex. These projections are the de facto standard and are widely used by international organizations, governments and researchers. Like almost all other population projections, they are produced using the standard deterministic cohort-component projection method and do not yield statements of uncertainty. We describe a Bayesian method for producing probabilistic population projections for most countries which are projections that the United Nations could use. It has at its core Bayesian hierarchical models for the total fertility rate and life expectancy at birth. We illustrate the method and show how it can be extended to address concerns about the UN's current assumptions about the long-term distribution of fertility. The method is implemented in the R packages bayesTFR, bayesLife, bayesPop and bayesDem.Comment: Published in at http://dx.doi.org/10.1214/13-STS419 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Probabilistic projections of HIV prevalence using Bayesian melding

    Full text link
    The Joint United Nations Programme on HIV/AIDS (UNAIDS) has developed the Estimation and Projection Package (EPP) for making national estimates and short-term projections of HIV prevalence based on observed prevalence trends at antenatal clinics. Assessing the uncertainty about its estimates and projections is important for informed policy decision making, and we propose the use of Bayesian melding for this purpose. Prevalence data and other information about the EPP model's input parameters are used to derive a probabilistic HIV prevalence projection, namely a probability distribution over a set of future prevalence trajectories. We relate antenatal clinic prevalence to population prevalence and account for variability between clinics using a random effects model. Predictive intervals for clinic prevalence are derived for checking the model. We discuss predictions given by the EPP model and the results of the Bayesian melding procedure for Uganda, where prevalence peaked at around 28% in 1990; the 95% prediction interval for 2010 ranges from 2% to 7%.Comment: Published at http://dx.doi.org/10.1214/07-AOAS111 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore