89 research outputs found

    Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    Get PDF
    This work was financially supported by the National Natural Science Foundation (No. 81301329, No. 81271957 and No. 81530051), Joint foundation of Liaoning Province Natural Science Foundation and Shenyang National Laboratory for materials science (No. 2015021004), Youth Innovation Promotion Association, CAS (No. 2014168), and The Dunhill Medical Trust (R360/0514)

    Engineering Biofouling Resistant Materials Through the Systematic Adaptation of Surface Morphology

    Get PDF
    Abstract With increasing numbers of antimicrobial‐resistant (AMR) bacteria strains, it becomes essential that new and effective routes to minimizing bacterial infection rates are produced. Superhydrophobic materials show to be effective in reducing the attachment of bacteria due to their unique wetting properties which can minimize the points at which bacteria can initially adhere. Here, the impact of surface design on the anti‐biofouling capabilities of superhydrophobic pillared arrays prepared via photolithography is investigated. By systematically varying pillar spacing, insight is gained into the complex nature of superhydrophobic fouling as well as allowing for optimization of the antifouling performance. The optimal material within is achieved at a pillar spacing of 87.5 µm, which shows over a 3‐log (and gt; 99.9%) reduction in bacterial attachment

    Non-conventional therapeutics for oral infections

    Get PDF
    © 2015 Robert P Allaker and CW Ian Douglas. As our knowledge of host-microbial interactions within the oral cavity increases, future treatments are likely to be more targeted. For example, efforts to target a single species or key virulence factors that they produce, while maintaining the natural balance of the resident oral microbiota that acts to modulate the host immune response would be an advantage. Targeted approaches may be directed at the blackpigmented anaerobes, Porphyromonas gingivalis and Prevotella intermedia, associated with periodontitis. Such pigments provide an opportunity for targeted phototherapy with high-intensity monochromatic light. Functional inhibition approaches, including the use of enzyme inhibitors, are also being explored to control periodontitis. More general disruption of dental plaque through the use of enzymes and detergents, alone and in combination, shows much promise. The use of probiotics and prebiotics to improve gastrointestinal health has now led to an interest in using these approaches to control oral disease. More recently the potential of antimicrobial peptides and nanotechnology, through the application of nanoparticles with biocidal, antiadhesive and delivery capabilities, has been explored. The aim of this review is to consider the current status as regards non-conventional treatment approaches for oral infections with particular emphasis on the plaque-related diseases

    The Relationship between both Partial and Complete Denture Wearers and the Presence of Oral Malodour and the Effect of Denture Cleansers on the Oral Microbiota

    Get PDF
    Oral malodour may be considered a substantial concern for a sizeable percentage of the general population and as such it is important for clinicians to identify the causes of oral malodour, to treat the problem effectively. Aim: The aim of the present study was therefore to review the published literature on the presence and perception of oral malodour (halitosis) in patients wearing both removable partial or complete dentures and the effect of denture cleansers on the oral microbiota. Materials & Methods: A comprehensive electronic search of databases such as PUBMED, Cochrane, Google Scholar, EmBase and Web of Science was performed up to February 2016. Results: 55 potentially relevant reports were identified with six studies included in the review. Of the six included papers, only one study was randomised, and five studies were either non-randomised controlled clinical trials or, quasi randomised trials. The results from these studies would suggest that there was an indirect association between the presence and perception of oral malodour in both RPD and complete denture wearing patients. Conclusions: The strength of evidence was however insufficient to draw any definitive conclusions on a potential correlation of oral malodour in patients with RPDs

    Interdental and subgingival microbiota may affect the tongue microbial ecology and oral malodour in health, gingivitis and periodontitis.

    Get PDF
    BACKGROUND AND OBJECTIVE: Oral malodour is often observed in gingivitis and chronic periodontitis patients, and the tongue microbiota is thought to play a major role in malodorous gas production, including volatile sulphur compounds (VSCs) such as hydrogen sulphide (H2 S) and methanethiol (CH3 SH). This study aimed to examine the link between the presence of VSCs in mouth air (as a marker of oral malodour) and the oral bacterial ecology in the tongue and periodontal niches of healthy, gingivitis and periodontitis patients. METHODS: Participants were clinically assessed using plaque index, bleeding on probing (BOP) and periodontal probing depths, and VSC concentrations in their oral cavity measured using a portable gas chromatograph. Tongue scrapings, subgingival and interdental plaque were collected from healthy individuals (n = 22), and those with gingivitis (n = 14) or chronic periodontitis (n = 15). The bacterial 16S rRNA gene region V3-V4 in these samples was sequenced, and the sequences were analysed using the minimum entropy decomposition pipeline. RESULTS: Elevated VSC concentrations and CH3 SH:H2 S were observed in periodontitis compared with health. Significant ecological differences were observed in the tongue microbiota of healthy subjects with high plaque scores compared to low plaque scores, suggesting a possible connection between the microbiota of the tongue and the periodontium and that key dysbiotic changes may be initiated in the clinically healthy individuals who have higher dental plaque accumulation. Greater subgingival bacterial diversity was positively associated with H2 S in mouth air. Periodontopathic bacteria known to be prolific VSC producers increased in abundance on the tongue associated with increased bleeding on probing (BOP) and total percentage of periodontal pockets >6 mm, supporting the suggestion that the tongue may become a reservoir for periodontopathogens. CONCLUSION: This study highlights the importance of the periodontal microbiota in malodour and has detected dysbiotic changes in the tongue microbiota in periodontitis

    Effects of Chlorhexidine mouthwash on the oral microbiome.

    Get PDF
    Following a single blind, cross-over and non-randomized design we investigated the effect of 7-day use of chlorhexidine (CHX) mouthwash on the salivary microbiome as well as several saliva and plasma biomarkers in 36 healthy individuals. They rinsed thei

    Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli - an in vitro study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Probiotic bacteria are suggested to play a role in the maintenance of oral health. Such health promoting bacteria are added to different commercial probiotic products. The aim of the study was to investigate the ability of a selection of lactobacilli strains, used in commercially available probiotic products, to inhibit growth of oral mutans streptococci and <it>C. albicans in vitro</it>.</p> <p>Methods</p> <p>Eight probiotic lactobacilli strains were tested for growth inhibition on three reference strains and two clinical isolates of mutans streptococci as well as two reference strains and three clinical isolates of <it>Candida albicans </it>with an agar overlay method.</p> <p>Results</p> <p>At concentrations ranging from 10<sup>9 </sup>to 10<sup>5 </sup>CFU/ml, all lactobacilli strains inhibited the growth of the mutans streptococci completely with the exception of <it>L. acidophilus </it>La5 that executed only a slight inhibition of some strains at concentrations corresponding to 10<sup>7 </sup>and 10<sup>5 </sup>CFU/ml. At the lowest cell concentration (10<sup>3 </sup>CFU/ml), only <it>L. plantarum </it>299v and <it>L. plantarum </it>931 displayed a total growth inhibition while a slight inhibition was seen for all five mutans streptococci strains by <it>L. rhamnosus </it>LB21, <it>L. paracasei </it>F19, <it>L. reuteri </it>PTA 5289 and <it>L. reuteri </it>ATCC 55730. All the tested lactobacilli strains reduced candida growth but the effect was generally weaker than for mutans streptococci. The two <it>L. plantarum </it>strains and <it>L. reuteri </it>ATCC 55730 displayed the strongest inhibition on <it>Candida albicans</it>. No significant differences were observed between the reference strains and the clinical isolates.</p> <p>Conclusion</p> <p>The selected probiotic strains showed a significant but somewhat varying ability to inhibit growth of oral mutans streptococci and <it>Candida albicans in vitro</it>.</p

    The Canine Oral Microbiome

    Get PDF
    Determining the bacterial composition of the canine oral microbiome is of interest for two primary reasons. First, while the human oral microbiome has been well studied using molecular techniques, the oral microbiomes of other mammals have not been studied in equal depth using culture independent methods. This study allows a comparison of the number of bacterial taxa, based on 16S rRNA-gene sequence comparison, shared between humans and dogs, two divergent mammalian species. Second, canine oral bacteria are of interest to veterinary and human medical communities for understanding their roles in health and infectious diseases. The bacteria involved are mostly unnamed and not linked by 16S rRNA-gene sequence identity to a taxonomic scheme. This manuscript describes the analysis of 5,958 16S rRNA-gene sequences from 65 clone libraries. Full length 16S rRNA reference sequences have been obtained for 353 canine bacterial taxa, which were placed in 14 bacterial phyla, 23 classes, 37 orders, 66 families, and 148 genera. Eighty percent of the taxa are currently unnamed. The bacterial taxa identified in dogs are markedly different from those of humans with only 16.4% of oral taxa are shared between dogs and humans based on a 98.5% 16S rRNA sequence similarity cutoff. This indicates that there is a large divergence in the bacteria comprising the oral microbiomes of divergent mammalian species. The historic practice of identifying animal associated bacteria based on phenotypic similarities to human bacteria is generally invalid. This report describes the diversity of the canine oral microbiome and provides a provisional 16S rRNA based taxonomic scheme for naming and identifying unnamed canine bacterial taxa
    corecore