36,445 research outputs found
On vortex/wave interactions. Part 2. Originating from axisymmetric flow with swirl
Following the study in Part 1 of cross-flow and other non-symmetric effects on vortex/wave interactions in boundary layers, the present Part 2 applies the ideas of Part 1 and related works to an incident axisymmetric flow supplemented by a small swirl or azimuthal velocity. This is with a view to possibly increasing understanding of vortex breakdown. The wave components involved are predominantly inviscid Rayleigh-like ones. The presence of the swirl leads to extra features and complications associated mainly with extra logarithmic contributions but for the dominant interactions essentially the same equations as in Part 1 are found. These dominant nonlinear interactions must be based on azimuthal wavenumbers of +/-1 in the case of the Squire jet with swirl. In contrast to Part 1, which consisted mainly of an analysis of the quasi-bounded solutions, a representative set of numerical solutions of the full integro-differential amplitude equations is presented, for realistic axial and swirl velocity profiles. The work points also to the influence of further increases in the incident swirl
Homology stability for outer automorphism groups of free groups
We prove that the quotient map from Aut(F_n) to Out(F_n) induces an
isomorphism on homology in dimension i for n at least 2i+4. This corrects an
earlier proof by the first author and significantly improves the stability
range. In the course of the proof, we also prove homology stability for a
sequence of groups which are natural analogs of mapping class groups of
surfaces with punctures. In particular, this leads to a slight improvement on
the known stability range for Aut(F_n), showing that its i-th homology is
independent of n for n at least 2i+2.Comment: Published by Algebraic and Geometric Topology at
http://www.maths.warwick.ac.uk/agt/AGTVol4/agt-4-54.abs.htm
Simultaneous release of glutamate and acetylcholine from single magnocellular "cholinergic" basal forebrain neurons
Basal forebrain (BF) neurons provide the principal cholinergic drive to the hippocampus and cortex. Their degeneration is associated with the cognitive defects of Alzheimer's disease. Immunohistochemical studies suggest that some of these neurons contain glutamate, so might also release it. To test this, we made microisland cultures of single BF neurons from 12- to 14-d-old rats. Over 1-8 weeks in culture, neuronal processes made autaptic connections onto the neuron. In 34 of 36 cells tested, a somatically generated action potential was followed by a short-latency EPSC that was blocked by 1 mM kynurenic acid, showing that they released glutamate. To test whether the same neuron also released acetylcholine, we placed a voltage-clamped rat myoball expressing nicotinic receptors in contact with a neurite. In six of six neurons tested, the glutamatergic EPSC was accompanied by a nicotinic (hexamethonium-sensitive) myoball current. Stimulation of the M-2-muscarinic presynaptic receptors ( characterized using tripitramine and pirenzepine) produced a parallel inhibition of autaptic glutamatergic and myoball nicotinic responses; metabotropic glutamate receptor stimulation produced similar but less consistent and weaker effects. Atropine enhanced the glutamatergic EPSCs during repetitive stimulation by 25 +/- 6%; the anti-cholinesterase neostigmine reduced the train EPSCs by 37 +/- 6%. Hence, synaptically released acetylcholine exerted a negative-feedback inhibition of coreleased glutamate. We conclude that most cholinergic basal forebrain neurons are capable of releasing glutamate as a cotransmitter and that the release of both transmitters is subject to simultaneous feedback inhibition by synaptically released acetylcholine. This has implications for BF neuron function and for the use of cholinesterase inhibitors in Alzheimer's disease
Study to define and verify the personal oral hygiene requirements for extended manned space flight Annual report, 1 Jul. 1968 - 30 Jun. 1969
Astronaut oral hygiene requirements for extended manned space fligh
Molecular simulations of entangled defect structures around nanoparticles in nematic liquid crystals
We investigate the defect structures forming around two nanoparticles in a
Gay-Berne nematic liquid crystal using molecular simulations. For small
separations, disclinations entangle both particles forming the figure of eight,
the figure of omega and the figure of theta. These defect structures are
similar in shape and occur with a comparable frequency to micron-sized
particles studied in experiments. The simulations reveal fast transitions from
one defect structure to another suggesting that particles of nanometre size
cannot be bound together effectively. We identify the 'three-ring' structure
observed in previous molecular simulations as a superposition of the different
entangled and non-entangled states over time and conclude that it is not itself
a stable defect structure.Comment: keywords: molecular-simulation, defects, nematic, disclination,
algorithmic classification ; 8 pages, 7 figures, 1 tabl
Recommended from our members
A highly scalable Met Office NERC Cloud model
Large Eddy Simulation is a critical modelling tool for scien- tists investigating atmospheric flows, turbulence and cloud microphysics. Within the UK, the principal LES model used by the atmospheric research community is the Met Office Large Eddy Model (LEM). The LEM was originally devel- oped in the late 1980s using computational techniques and assumptions of the time, which means that the it does not scale beyond 512 cores. In this paper we present the Met Office NERC Cloud model, MONC, which is a re-write of the existing LEM. We discuss the software engineering and architectural decisions made in order to develop a flexible, extensible model which the community can easily customise for their own needs. The scalability of MONC is evaluated, along with numerous additional customisations made to fur- ther improve performance at large core counts. The result of this work is a model which delivers to the community signifi- cant new scientific modelling capability that takes advantage of the current and future generation HPC machine
FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries
Matched-filter searches for gravitational waves from coalescing compact
binaries by the LIGO Scientific Collaboration use the FINDCHIRP algorithm: an
implementation of the optimal filter with innovations to account for unknown
signal parameters and to improve performance on detector data that has
nonstationary and non-Gaussian artifacts. We provide details on the FINDCHIRP
algorithm as used in the search for subsolar mass binaries, binary neutron
stars, neutron star-black hole binaries, and binary black holes.Comment: 19 pages, 1 figure, journal version with Creative Commons 4.0
open-access license adde
- …
