36,445 research outputs found

    On vortex/wave interactions. Part 2. Originating from axisymmetric flow with swirl

    Get PDF
    Following the study in Part 1 of cross-flow and other non-symmetric effects on vortex/wave interactions in boundary layers, the present Part 2 applies the ideas of Part 1 and related works to an incident axisymmetric flow supplemented by a small swirl or azimuthal velocity. This is with a view to possibly increasing understanding of vortex breakdown. The wave components involved are predominantly inviscid Rayleigh-like ones. The presence of the swirl leads to extra features and complications associated mainly with extra logarithmic contributions but for the dominant interactions essentially the same equations as in Part 1 are found. These dominant nonlinear interactions must be based on azimuthal wavenumbers of +/-1 in the case of the Squire jet with swirl. In contrast to Part 1, which consisted mainly of an analysis of the quasi-bounded solutions, a representative set of numerical solutions of the full integro-differential amplitude equations is presented, for realistic axial and swirl velocity profiles. The work points also to the influence of further increases in the incident swirl

    Homology stability for outer automorphism groups of free groups

    Full text link
    We prove that the quotient map from Aut(F_n) to Out(F_n) induces an isomorphism on homology in dimension i for n at least 2i+4. This corrects an earlier proof by the first author and significantly improves the stability range. In the course of the proof, we also prove homology stability for a sequence of groups which are natural analogs of mapping class groups of surfaces with punctures. In particular, this leads to a slight improvement on the known stability range for Aut(F_n), showing that its i-th homology is independent of n for n at least 2i+2.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol4/agt-4-54.abs.htm

    Simultaneous release of glutamate and acetylcholine from single magnocellular "cholinergic" basal forebrain neurons

    Get PDF
    Basal forebrain (BF) neurons provide the principal cholinergic drive to the hippocampus and cortex. Their degeneration is associated with the cognitive defects of Alzheimer's disease. Immunohistochemical studies suggest that some of these neurons contain glutamate, so might also release it. To test this, we made microisland cultures of single BF neurons from 12- to 14-d-old rats. Over 1-8 weeks in culture, neuronal processes made autaptic connections onto the neuron. In 34 of 36 cells tested, a somatically generated action potential was followed by a short-latency EPSC that was blocked by 1 mM kynurenic acid, showing that they released glutamate. To test whether the same neuron also released acetylcholine, we placed a voltage-clamped rat myoball expressing nicotinic receptors in contact with a neurite. In six of six neurons tested, the glutamatergic EPSC was accompanied by a nicotinic (hexamethonium-sensitive) myoball current. Stimulation of the M-2-muscarinic presynaptic receptors ( characterized using tripitramine and pirenzepine) produced a parallel inhibition of autaptic glutamatergic and myoball nicotinic responses; metabotropic glutamate receptor stimulation produced similar but less consistent and weaker effects. Atropine enhanced the glutamatergic EPSCs during repetitive stimulation by 25 +/- 6%; the anti-cholinesterase neostigmine reduced the train EPSCs by 37 +/- 6%. Hence, synaptically released acetylcholine exerted a negative-feedback inhibition of coreleased glutamate. We conclude that most cholinergic basal forebrain neurons are capable of releasing glutamate as a cotransmitter and that the release of both transmitters is subject to simultaneous feedback inhibition by synaptically released acetylcholine. This has implications for BF neuron function and for the use of cholinesterase inhibitors in Alzheimer's disease

    Molecular simulations of entangled defect structures around nanoparticles in nematic liquid crystals

    Get PDF
    We investigate the defect structures forming around two nanoparticles in a Gay-Berne nematic liquid crystal using molecular simulations. For small separations, disclinations entangle both particles forming the figure of eight, the figure of omega and the figure of theta. These defect structures are similar in shape and occur with a comparable frequency to micron-sized particles studied in experiments. The simulations reveal fast transitions from one defect structure to another suggesting that particles of nanometre size cannot be bound together effectively. We identify the 'three-ring' structure observed in previous molecular simulations as a superposition of the different entangled and non-entangled states over time and conclude that it is not itself a stable defect structure.Comment: keywords: molecular-simulation, defects, nematic, disclination, algorithmic classification ; 8 pages, 7 figures, 1 tabl

    FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries

    Get PDF
    Matched-filter searches for gravitational waves from coalescing compact binaries by the LIGO Scientific Collaboration use the FINDCHIRP algorithm: an implementation of the optimal filter with innovations to account for unknown signal parameters and to improve performance on detector data that has nonstationary and non-Gaussian artifacts. We provide details on the FINDCHIRP algorithm as used in the search for subsolar mass binaries, binary neutron stars, neutron star-black hole binaries, and binary black holes.Comment: 19 pages, 1 figure, journal version with Creative Commons 4.0 open-access license adde
    corecore