2,932 research outputs found

    A four-helix bundle stores copper for methane oxidation

    Get PDF
    Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location

    Revisiting soliton contributions to perturbative amplitudes

    Get PDF
    Open Access funded by SCOAP3. CP is a Royal Society Research Fellow and partly supported by the U.S. Department of Energy under grants DOE-SC0010008, DOE-ARRA-SC0003883 and DOE-DE-SC0007897. ABR is supported by the Mitchell Family Foundation. We would like to thank the Mitchell Institute at Texas A&M and the NHETC at Rutgers University respectively for hospitality during the course of this work. We would also like to acknowledge the Aspen Center for Physics and NSF grant 1066293 for a stimulating research environment

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    Observation of Dirac plasmons in a topological insulator

    Full text link
    Plasmons are the quantized collective oscillations of electrons in metals and doped semiconductors. The plasmons of ordinary, massive electrons are since a long time basic ingredients of research in plasmonics and in optical metamaterials. Plasmons of massless Dirac electrons were instead recently observed in a purely two-dimensional electron system (2DEG)like graphene, and their properties are promising for new tunable plasmonic metamaterials in the terahertz and the mid-infrared frequency range. Dirac quasi-particles are known to exist also in the two-dimensional electron gas which forms at the surface of topological insulators due to a strong spin-orbit interaction. Therefore,one may look for their collective excitations by using infrared spectroscopy. Here we first report evidence of plasmonic excitations in a topological insulator (Bi2Se3), that was engineered in thin micro-ribbon arrays of different width W and period 2W to select suitable values of the plasmon wavevector k. Their lineshape was found to be extremely robust vs. temperature between 6 and 300 K, as one may expect for the excitations of topological carriers. Moreover, by changing W and measuring in the terahertz range the plasmonic frequency vP vs. k we could show, without using any fitting parameter, that the dispersion curve is in quantitative agreement with that predicted for Dirac plasmons.Comment: 11 pages, 3 figures, published in Nature Nanotechnology (2013

    High Energy Bounds on Soft N=4 SYM Amplitudes from AdS/CFT

    Get PDF
    Using the AdS/CFT correspondence, we study the high-energy behavior of colorless dipole elastic scattering amplitudes in N=4 SYM gauge theory through the Wilson loop correlator formalism and Euclidean to Minkowskian analytic continuation. The purely elastic behavior obtained at large impact-parameter L, through duality from disconnected AdS_5 minimal surfaces beyond the Gross-Ooguri transition point, is combined with unitarity and analyticity constraints in the central region. In this way we obtain an absolute bound on the high-energy behavior of the forward scattering amplitude due to the graviton interaction between minimal surfaces in the bulk. The dominant "Pomeron" intercept is bounded by alpha less than or equal to 11/7 using the AdS/CFT constraint of a weak gravitational field in the bulk. Assuming the elastic eikonal approximation in a larger impact-parameter range gives alpha between 4/3 and 11/7. The actual intercept becomes 4/3 if one assumes the elastic eikonal approximation within its maximally allowed range L larger than exp{Y/3}, where Y is the total rapidity. Subleading AdS/CFT contributions at large impact-parameter due to the other d=10 supergravity fields are obtained. A divergence in the real part of the tachyonic KK scalar is cured by analyticity but signals the need for a theoretical completion of the AdS/CFT scheme.Comment: 25 pages, 3 eps figure

    How large should whales be?

    Get PDF
    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table

    Climate impacts of energy technologies depend on emissions timing

    Get PDF
    Energy technologies emit greenhouse gases with differing radiative efficiencies and atmospheric lifetimes. Standard practice for evaluating technologies, which uses the global warming potential (GWP) to compare the integrated radiative forcing of emitted gases over a fixed time horizon, does not acknowledge the importance of a changing background climate relative to climate change mitigation targets. Here we demonstrate that the GWP misvalues the impact of CH[subscript 4]-emitting technologies as mid-century approaches, and we propose a new class of metrics to evaluate technologies based on their time of use. The instantaneous climate impact (ICI) compares gases in an expected radiative forcing stabilization year, and the cumulative climate impact (CCI) compares their time-integrated radiative forcing up to a stabilization year. Using these dynamic metrics, we quantify the climate impacts of technologies and show that high-CH[subscript 4]-emitting energy sources become less advantageous over time. The impact of natural gas for transportation, with CH[subscript 4] leakage, exceeds that of gasoline within 1–2 decades for a commonly cited 3 W m[superscript −2] stabilization target. The impact of algae biodiesel overtakes that of corn ethanol within 2–3 decades, where algae co-products are used to produce biogas and corn co-products are used for animal feed. The proposed metrics capture the changing importance of CH[subscript 4] emissions as a climate threshold is approached, thereby addressing a major shortcoming of the GWP for technology evaluation.New England University Transportation Center (DOT Grant DTRT07-G-0001

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    β-alanine supplementation improves in-vivo fresh and fatigued skeletal muscle relaxation speed

    Get PDF
    Purpose: In fresh muscle, supplementation with the rate-limiting precursor of carnosine, β-alanine (BA), results in a decline in muscle half-relaxation time (HRT) potentially via alterations to calcium (Ca2+) handling. Accumulation of hydrogen cation (H+) has been shown to impact Ca2+ signalling during muscular contraction, carnosine has the potential to serve as a cytoplasmic regulator of Ca2+ and H+ coupling, since it binds to both ions. The present study examined the effect of BA supplementation on intrinsic in-vivo isometric knee extensor force production and muscle contractility in both fresh and fatigued human skeletal muscle assessed during voluntary and electrically evoked (nerve and superficial muscle stimulation) contractions. Methods: Twenty-three males completed two experimental sessions, pre- and post- 28 day supplementation with 6.4 g.day−1 of BA (n=12) or placebo (PLA; n=11). Isometric force was recorded during a series of voluntary and electrically evoked knee extensor contractions. Results: BA supplementation had no effect on voluntary or electrically  evoked isometric force production, or twitch electromechanical delay and time-to-peak tension. There was a significant decline in muscle HRT in fresh and fatigued muscle conditions  during both resting (3±13%; 19±26%) and potentiated (1±15%; 2±20%) twitch contractions. Conclusions: The mechanism for reduced HRT in fresh and fatigued skeletal muscle following BA supplementation is unclear. Due to the importance of muscle relaxation on total energy consumption, especially during short, repeated contractions, BA supplementation may prove to be beneficial in minimising contractile slowing induced by fatigue. Trial registration The trial is registered with Clinicaltrials.gov, ID number NCT02819505

    Comment on “The global tree restoration potential”

    Get PDF
    This is the author accepted manuscript. The final version is available from American Association for the Advancement of Science via the DOI in this record.Bastin et al. (Reports, 5 July 2019, p. 76) claim that global tree restoration is the most effective climate change solution to date, with a reported carbon storage potential of 205 gigatonnes of carbon. However, this estimate and its implications for climate mitigation are inconsistent with the dynamics of the global carbon cycle and its response to anthropogenic carbon dioxide emissions.European UnionEuropean Commissio
    corecore