7,497 research outputs found
Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy.
Transgenic mice were generated by using the alpha-myosin heavy chain promoter coupled to the coding sequence of a constitutively active mutant alpha 1B-adrenergic receptor (AR). These transgenic animals demonstrated cardiac-specific expression of this alpha 1-AR with resultant activation of phospholipase C as shown by increased myocardial diacylglycerol content. A phenotype consistent with cardiac hypertrophy developed in adult transgenic mice with increased heart/body weight ratios, myocyte cross-sectional areas, and ventricular atrial natriuretic factor mRNA levels relative to nontransgenic controls. These transgenic animals may provide insight into the biochemical triggers that induce hypertrophy in cardiac disease and serve as a convenient experimental model for studies of this condition
Symmetry-Breaking Motility
Locomotion of bacteria by actin polymerization, and in vitro motion of
spherical beads coated with a protein catalyzing polymerization, are examples
of active motility. Starting from a simple model of forces locally normal to
the surface of a bead, we construct a phenomenological equation for its motion.
The singularities at a continuous transition between moving and stationary
beads are shown to be related to the symmetries of its shape. Universal
features of the phase behavior are calculated analytically and confirmed by
simulations. Fluctuations in velocity are shown to be generically
non-Maxwellian and correlated to the shape of the bead.Comment: 4 pages, 2 figures, REVTeX; formatting of references correcte
Building solids inside nano-space: from confined amorphous through confined solvate to confined ‘metastable’ polymorph
The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate – ROY (259.3 g mol1). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical – indomethacin (IMC, 357.8 g mol1), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids
Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the Children's Oncology Group.
BackgroundNew prognostic markers are needed to identify patients with Ewing sarcoma (EWS) and osteosarcoma unlikely to benefit from standard therapy. We describe the incidence and association with outcome of circulating tumour DNA (ctDNA) using next-generation sequencing (NGS) assays.MethodsA NGS hybrid capture assay and an ultra-low-pass whole-genome sequencing assay were used to detect ctDNA in banked plasma from patients with EWS and osteosarcoma, respectively. Patients were coded as positive or negative for ctDNA and tested for association with clinical features and outcome.ResultsThe analytic cohort included 94 patients with EWS (82% from initial diagnosis) and 72 patients with primary localised osteosarcoma (100% from initial diagnosis). ctDNA was detectable in 53% and 57% of newly diagnosed patients with EWS and osteosarcoma, respectively. Among patients with newly diagnosed localised EWS, detectable ctDNA was associated with inferior 3-year event-free survival (48.6% vs. 82.1%; p = 0.006) and overall survival (79.8% vs. 92.6%; p = 0.01). In both EWS and osteosarcoma, risk of event and death increased with ctDNA levels.ConclusionsNGS assays agnostic of primary tumour sequencing results detect ctDNA in half of the plasma samples from patients with newly diagnosed EWS and osteosarcoma. Detectable ctDNA is associated with inferior outcomes
Deletion of parasite immune modulatory sequences combined with immune activating signals enhances vaccine mediated protection against filarial nematodes
<p>Background: Filarial nematodes are tissue-dwelling parasites that can be killed by Th2-driven immune effectors, but that have evolved to withstand immune attack and establish chronic infections by suppressing host immunity. As a consequence, the efficacy of a vaccine against filariasis may depend on its capacity to counter parasite-driven immunomodulation.</p>
<p>Methodology and Principal Findings: We immunised mice with DNA plasmids expressing functionally-inactivated forms of two immunomodulatory molecules expressed by the filarial parasite Litomosoides sigmodontis: the abundant larval transcript-1 (LsALT) and cysteine protease inhibitor-2 (LsCPI). The mutant proteins enhanced antibody and cytokine responses to live parasite challenge, and led to more leukocyte recruitment to the site of infection than their native forms. The immune response was further enhanced when the antigens were targeted to dendritic cells using a single chain Fv-αDEC205 antibody and co-administered with plasmids that enhance T helper 2 immunity (IL-4) and antigen-presenting cell recruitment (Flt3L, MIP-1α). Mice immunised simultaneously against the mutated forms of LsALT and LsCPI eliminated adult parasites faster and consistently reduced peripheral microfilaraemia. A multifactorial analysis of the immune response revealed that protection was strongly correlated with the production of parasite-specific IgG1 and with the numbers of leukocytes present at the site of infection.</p>
<p>Conclusions: We have developed a successful strategy for DNA vaccination against a nematode infection that specifically targets parasite-driven immunosuppression while simultaneously enhancing Th2 immune responses and parasite antigen presentation by dendritic cells.</p>
Idiopathic acute eosinophilic pneumonia in a 14-month-old girl
Idiopathic acute eosinophilic pneumonia (IAEP), characterized by acute febrile respiratory failure associated with diffuse radiographic infiltrates and pulmonary eosinophilia, is rarely reported in children. Diagnosis is based on an association of characteristic features including acute respiratory failure with fever, bilateral infiltrates on the chest X-ray, severe hypoxemia and bronchoalveolar lavage fluid >25% eosinophils or a predominant eosinophilic infiltrate in lung biopsies in the absence of any identifiable etiology. We present a 14-month-old girl who was admitted to our pediatric intensive care unit because of acute respiratory distress. She had a fever, dry cough, and progressive dyspnea for 1 day. Chest X-ray showed multifocal consolidations, increased interstitial markings, parenchymal emphysema and pneumothorax. IAEP was confirmed by marked pulmonary infiltrates of eosinophils in the lung biopsy specimen. Most known causes of acute eosinophilic pneumonia, such as exposure to causative drugs, toxins, second-hand smoking and infections were excluded. Her symptoms were resolved quickly after corticosteroid therapy
A timeband framework for modelling real-time systems
Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper
Anatomically and Functionally Distinct Lung Mesenchymal Populations Marked by Lgr5 and Lgr6
The diversity of mesenchymal cell types in the lung that influence epithelial homeostasis and regeneration is poorly defined. We used genetic lineage tracing, single-cell RNA sequencing, and organoid culture approaches to show that Lgr5 and Lgr6, well-known markers of stem cells in epithelial tissues, are markers of mesenchymal cells in the adult lung. Lgr6 + cells comprise a subpopulation of smooth muscle cells surrounding airway epithelia and promote airway differentiation of epithelial progenitors via Wnt-Fgf10 cooperation. Genetic ablation of Lgr6 + cells impairs airway injury repair in vivo. Distinct Lgr5 + cells are located in alveolar compartments and are sufficient to promote alveolar differentiation of epithelial progenitors through Wnt activation. Modulating Wnt activity altered differentiation outcomes specified by mesenchymal cells. This identification of region- and lineage-specific crosstalk between epithelium and their neighboring mesenchymal partners provides new understanding of how different cell types are maintained in the adult lung. Keywords:
mesenchymal cells; bronchiolar epithelium; alveolar epithelium;
lung stem cells; lung; differentiation; niche; Wnt signalin
Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis
Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1
The developmental effects of media-ideal internalization and self-objectification processes on adolescents’ negative body-feelings, dietary restraint, and binge eating
Despite accumulated experimental evidence of the negative effects of exposure to media-idealized images, the degree to which body image, and eating related disturbances are caused by media portrayals of gendered beauty ideals remains controversial. On the basis of the most up-to-date meta-analysis of experimental studies indicating that media-idealized images have the most harmful and substantial impact on vulnerable individuals regardless of gender (i.e., “internalizers” and “self-objectifiers”), the current longitudinal study examined the direct and mediated links posited in objectification theory among media-ideal internalization, self-objectification, shame and anxiety surrounding the body and appearance, dietary restraint, and binge eating. Data collected from 685 adolescents aged between 14 and 15 at baseline (47 % males), who were interviewed and completed standardized measures annually over a 3-year period, were analyzed using a structural equation modeling approach. Results indicated that media-ideal internalization predicted later thinking and scrutinizing of one’s body from an external observer’s standpoint (or self-objectification), which then predicted later negative emotional experiences related to one’s body and appearance. In turn, these negative emotional experiences predicted subsequent dietary restraint and binge eating, and each of these core features of eating disorders influenced each other. Differences in the strength of these associations across gender were not observed, and all indirect effects were significant. The study provides valuable information about how the cultural values embodied by gendered beauty ideals negatively influence adolescents’ feelings, thoughts and behaviors regarding their own body, and on the complex processes involved in disordered eating. Practical implications are discussed
- …
