4,708 research outputs found
A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes
Peptides that are antigenic for T lymphocytes are ligands for two receptors, the class I or II glycoproteins that are encoded by genes in the major histocompatibility complex, and the idiotypic / chain T-cell antigen receptor1–9. That a peptide must bind to an MHC molecule to interact with a T-cell antigen receptor is the molecular basis of the MHC restriction of antigen-recognition by T lymphocytes10,11. In such a trimolecular interaction the amino-acid sequence of the peptide must specify the contact with both receptors: agretope residues bind to the MHC receptor and epitope residues bind to the T-cell antigen receptor12,13. From a compilation of known antigenic peptides, two algorithms have been proposed to predict antigenic sites in proteins. One algorithm uses linear motifs in the sequence14, whereas the other considers peptide conformation and predicts antigenicity for amphipathic -helices15,16. We report here that a systematic delimitation of an antigenic site precisely identifies a predicted pentapeptide motif as the minimal antigenic determinant presented by a class I MHC molecule and recognized by a cytolytic T lymphocyte clone
Virtual patients design and its effect on clinical reasoning and student experience : a protocol for a randomised factorial multi-centre study
Background
Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent).
Methods/Design
This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded.
In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes
Reasoning about the executability of goal-plan trees
User supplied domain control knowledge in the form of hierarchically structured agent plans is at the heart of a number of approaches to reasoning about action. This knowledge encodes the “standard operating procedures” of an agent for responding to environmental changes, thereby enabling fast and effective action selection. This paper develops mechanisms for reasoning about a set of hierarchical plans and goals, by deriving “summary information” from the conditions on the execution of the basic actions forming the “leaves” of the hierarchy. We provide definitions of necessary and contingent pre-, in-, and postconditions of goals and plans that are consistent with the conditions of the actions forming a plan. Our definitions extend previous work with an account of both deterministic and non-deterministic actions, and with support for specifying that actions and goals within a (single) plan can execute concurrently. Based on our new definitions, we also specify requirements that are useful in scheduling the execution of steps in a set of goal-plan trees. These requirements essentially define conditions that must be protected by any scheduler that interleaves the execution of steps from different goal-plan trees
Manipulating infrared photons using plasmons in transparent graphene superlattices
Superlattices are artificial periodic nanostructures which can control the
flow of electrons. Their operation typically relies on the periodic modulation
of the electric potential in the direction of electron wave propagation. Here
we demonstrate transparent graphene superlattices which can manipulate infrared
photons utilizing the collective oscillations of carriers, i.e., plasmons of
the ensemble of multiple graphene layers. The superlattice is formed by
depositing alternating wafer-scale graphene sheets and thin insulating layers,
followed by patterning them all together into 3-dimensional
photonic-crystal-like structures. We demonstrate experimentally that the
collective oscillation of Dirac fermions in such graphene superlattices is
unambiguously nonclassical: compared to doping single layer graphene,
distributing carriers into multiple graphene layers strongly enhances the
plasmonic resonance frequency and magnitude, which is fundamentally different
from that in a conventional semiconductor superlattice. This property allows us
to construct widely tunable far-infrared notch filters with 8.2 dB rejection
ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a
superlattice with merely five graphene atomic layers. Moreover, an unpatterned
superlattice shields up to 97.5% of the electromagnetic radiations below 1.2
terahertz. This demonstration also opens an avenue for the realization of other
transparent mid- and far-infrared photonic devices such as detectors,
modulators, and 3-dimensional meta-material systems.Comment: under revie
Observation of coherent many-body Rabi oscillations
A two-level quantum system coherently driven by a resonant electromagnetic
field oscillates sinusoidally between the two levels at frequency
which is proportional to the field amplitude [1]. This phenomenon, known as the
Rabi oscillation, has been at the heart of atomic, molecular and optical
physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi
oscillations in isolated single atoms or dilute gases form the basis for
metrological applications such as atomic clocks and precision measurements of
physical constants [3]. Both inhomogeneous distribution of coupling strength to
the field and interactions between individual atoms reduce the visibility of
the oscillation and may even suppress it completely. A remarkable
transformation takes place in the limit where only a single excitation can be
present in the sample due to either initial conditions or atomic interactions:
there arises a collective, many-body Rabi oscillation at a frequency
involving all N >> 1 atoms in the sample [4]. This is true even
for inhomogeneous atom-field coupling distributions, where single-atom Rabi
oscillations may be invisible. When one of the two levels is a strongly
interacting Rydberg level, many-body Rabi oscillations emerge as a consequence
of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to
quantum information processing based on this effect [5]. Here we report initial
observations of coherent many-body Rabi oscillations between the ground level
and a Rydberg level using several hundred cold rubidium atoms. The strongly
pronounced oscillations indicate a nearly complete excitation blockade of the
entire mesoscopic ensemble by a single excited atom. The results pave the way
towards quantum computation and simulation using ensembles of atoms
Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.
Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations
Long term time variability of cosmic rays and possible relevance to the development of life on Earth
An analysis is made of the manner in which the cosmic ray intensity at Earth
has varied over its existence and its possible relevance to both the origin and
the evolution of life. Much of the analysis relates to the 'high energy' cosmic
rays () and their variability due to the changing
proximity of the solar system to supernova remnants which are generally
believed to be responsible for most cosmic rays up to PeV energies. It is
pointed out that, on a statistical basis, there will have been considerable
variations in the likely 100 My between the Earth's biosphere reaching
reasonable stability and the onset of very elementary life. Interestingly,
there is the increasingly strong possibility that PeV cosmic rays are
responsible for the initiation of terrestrial lightning strokes and the
possibility arises of considerable increases in the frequency of lightnings and
thereby the formation of some of the complex molecules which are the 'building
blocks of life'. Attention is also given to the well known generation of the
oxides of nitrogen by lightning strokes which are poisonous to animal life but
helpful to plant growth; here, too, the violent swings of cosmic ray
intensities may have had relevance to evolutionary changes. A particular
variant of the cosmic ray acceleration model, put forward by us, predicts an
increase in lightning rate in the past and this has been sought in Korean
historical records. Finally, the time dependence of the overall cosmic ray
intensity, which manifests itself mainly at sub-10 GeV energies, has been
examined. The relevance of cosmic rays to the 'global electrical circuit'
points to the importance of this concept.Comment: 18 pages, 5 figures, accepted by 'Surveys in Geophysics
Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework
Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes
SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale
Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role
Quasi-Normal Modes of Stars and Black Holes
Perturbations of stars and black holes have been one of the main topics of
relativistic astrophysics for the last few decades. They are of particular
importance today, because of their relevance to gravitational wave astronomy.
In this review we present the theory of quasi-normal modes of compact objects
from both the mathematical and astrophysical points of view. The discussion
includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om,
Kerr and Kerr-Newman) and relativistic stars (non-rotating and
slowly-rotating). The properties of the various families of quasi-normal modes
are described, and numerical techniques for calculating quasi-normal modes
reviewed. The successes, as well as the limits, of perturbation theory are
presented, and its role in the emerging era of numerical relativity and
supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in
Relativity
- …
