774 research outputs found

    Evaluating Matrix Circuits

    Full text link
    The circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups is studied. The best upper bound for this problem is coRP\mathsf{coRP}, which is shown by a reduction to polynomial identity testing. Conversely, the compressed word problem for the linear group SL3(Z)\mathsf{SL}_3(\mathbb{Z}) is equivalent to polynomial identity testing. In the paper, it is shown that the compressed word problem for every finitely generated nilpotent group is in DETNC2\mathsf{DET} \subseteq \mathsf{NC}^2. Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as polynomial identity testing for skew arithmetic circuits

    Lessons from obesity prevention for the prevention of mental disorders: The primordial prevention approach

    Get PDF
    Background: Emerging evidence supports a relationship between risk factors for obesity and the genesis of the common mental disorders, depression and anxiety. This suggests common mental disorders should be considered as a form of non-communicable disease, preventable through the modification of lifestyle behaviours, particularly diet and physical activity.Discussion: Obesity prevention research since the 1970\u27s represents a considerable body of knowledge regarding strategies to modify diet and physical activity and so there may be clear lessons from obesity prevention that apply to the prevention of mental disorders. For obesity, as for common mental disorders, adolescence represents a key period of vulnerability. In this paper we briefly discuss relationships between modifiable lifestyle risk factors and mental health, lifestyle risk factor interventions in obesity prevention research, the current state of mental health prevention, and the implications of current applications of systems thinking in obesity prevention research for lifestyle interventions.Summary: We propose a potential focus for future mental health promotion interventions and emphasise the importance of lessons available from other lifestyle modification intervention programmes

    Polynomial Time Algorithms for Branching Markov Decision Processes and Probabilistic Min(Max) Polynomial Bellman Equations

    Get PDF
    We show that one can approximate the least fixed point solution for a multivariate system of monotone probabilistic max(min) polynomial equations, referred to as maxPPSs (and minPPSs, respectively), in time polynomial in both the encoding size of the system of equations and in log(1/epsilon), where epsilon > 0 is the desired additive error bound of the solution. (The model of computation is the standard Turing machine model.) We establish this result using a generalization of Newton's method which applies to maxPPSs and minPPSs, even though the underlying functions are only piecewise-differentiable. This generalizes our recent work which provided a P-time algorithm for purely probabilistic PPSs. These equations form the Bellman optimality equations for several important classes of infinite-state Markov Decision Processes (MDPs). Thus, as a corollary, we obtain the first polynomial time algorithms for computing to within arbitrary desired precision the optimal value vector for several classes of infinite-state MDPs which arise as extensions of classic, and heavily studied, purely stochastic processes. These include both the problem of maximizing and mininizing the termination (extinction) probability of multi-type branching MDPs, stochastic context-free MDPs, and 1-exit Recursive MDPs. Furthermore, we also show that we can compute in P-time an epsilon-optimal policy for both maximizing and minimizing branching, context-free, and 1-exit-Recursive MDPs, for any given desired epsilon > 0. This is despite the fact that actually computing optimal strategies is Sqrt-Sum-hard and PosSLP-hard in this setting. We also derive, as an easy consequence of these results, an FNP upper bound on the complexity of computing the value (within arbitrary desired precision) of branching simple stochastic games (BSSGs)

    On Resource-bounded versions of the van Lambalgen theorem

    Full text link
    The van Lambalgen theorem is a surprising result in algorithmic information theory concerning the symmetry of relative randomness. It establishes that for any pair of infinite sequences AA and BB, BB is Martin-L\"of random and AA is Martin-L\"of random relative to BB if and only if the interleaved sequence ABA \uplus B is Martin-L\"of random. This implies that AA is relative random to BB if and only if BB is random relative to AA \cite{vanLambalgen}, \cite{Nies09}, \cite{HirschfeldtBook}. This paper studies the validity of this phenomenon for different notions of time-bounded relative randomness. We prove the classical van Lambalgen theorem using martingales and Kolmogorov compressibility. We establish the failure of relative randomness in these settings, for both time-bounded martingales and time-bounded Kolmogorov complexity. We adapt our classical proofs when applicable to the time-bounded setting, and construct counterexamples when they fail. The mode of failure of the theorem may depend on the notion of time-bounded randomness

    The Impatient May Use Limited Optimism to Minimize Regret

    Full text link
    Discounted-sum games provide a formal model for the study of reinforcement learning, where the agent is enticed to get rewards early since later rewards are discounted. When the agent interacts with the environment, she may regret her actions, realizing that a previous choice was suboptimal given the behavior of the environment. The main contribution of this paper is a PSPACE algorithm for computing the minimum possible regret of a given game. To this end, several results of independent interest are shown. (1) We identify a class of regret-minimizing and admissible strategies that first assume that the environment is collaborating, then assume it is adversarial---the precise timing of the switch is key here. (2) Disregarding the computational cost of numerical analysis, we provide an NP algorithm that checks that the regret entailed by a given time-switching strategy exceeds a given value. (3) We show that determining whether a strategy minimizes regret is decidable in PSPACE

    Surface states in nearly modulated systems

    Full text link
    A Landau model is used to study the phase behavior of the surface layer for magnetic and cholesteric liquid crystal systems that are at or near a Lifshitz point marking the boundary between modulated and homogeneous bulk phases. The model incorporates surface and bulk fields and includes a term in the free energy proportional to the square of the second derivative of the order parameter in addition to the usual term involving the square of the first derivative. In the limit of vanishing bulk field, three distinct types of surface ordering are possible: a wetting layer, a non-wet layer having a small deviation from bulk order, and a different non-wet layer with a large deviation from bulk order which decays non-monotonically as distance from the wall increases. In particular the large deviation non-wet layer is a feature of systems at the Lifshitz point and also those having only homogeneous bulk phases.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    Systematic review of mental health and well-being outcomes following community-based obesity prevention interventions among adolescents

    Get PDF
    This paper aimed to systematically evaluate the mental health and well-being outcomes observed in previous community-based obesity prevention interventions in adolescent populations

    A parameterized halting problem, the linear time hierarchy, and the MRDP theorem

    Get PDF
    The complexity of the parameterized halting problem for nondeterministic Turing machines p-Halt is known to be related to the question of whether there are logics capturing various complexity classes [10]. Among others, if p-Halt is in para-AC0, the parameterized version of the circuit complexity class AC0, then AC0, or equivalently, (+, x)-invariant FO, has a logic. Although it is widely believed that p-Halt ∉. para-AC0, we show that the problem is hard to settle by establishing a connection to the question in classical complexity of whether NE ⊈ LINH. Here, LINH denotes the linear time hierarchy. On the other hand, we suggest an approach toward proving NE ⊈ LINH using bounded arithmetic. More specifically, we demonstrate that if the much celebrated MRDP (for Matiyasevich-Robinson-Davis-Putnam) theorem can be proved in a certain fragment of arithmetic, then NE ⊈ LINH. Interestingly, central to this result is a para-AC0 lower bound for the parameterized model-checking problem for FO on arithmetical structures.Peer ReviewedPostprint (author's final draft

    Balancing Bounded Treewidth Circuits

    Full text link
    Algorithmic tools for graphs of small treewidth are used to address questions in complexity theory. For both arithmetic and Boolean circuits, it is shown that any circuit of size nO(1)n^{O(1)} and treewidth O(login)O(\log^i n) can be simulated by a circuit of width O(logi+1n)O(\log^{i+1} n) and size ncn^c, where c=O(1)c = O(1), if i=0i=0, and c=O(loglogn)c=O(\log \log n) otherwise. For our main construction, we prove that multiplicatively disjoint arithmetic circuits of size nO(1)n^{O(1)} and treewidth kk can be simulated by bounded fan-in arithmetic formulas of depth O(k2logn)O(k^2\log n). From this we derive the analogous statement for syntactically multilinear arithmetic circuits, which strengthens a theorem of Mahajan and Rao. As another application, we derive that constant width arithmetic circuits of size nO(1)n^{O(1)} can be balanced to depth O(logn)O(\log n), provided certain restrictions are made on the use of iterated multiplication. Also from our main construction, we derive that Boolean bounded fan-in circuits of size nO(1)n^{O(1)} and treewidth kk can be simulated by bounded fan-in formulas of depth O(k2logn)O(k^2\log n). This strengthens in the non-uniform setting the known inclusion that SC0NC1SC^0 \subseteq NC^1. Finally, we apply our construction to show that {\sc reachability} for directed graphs of bounded treewidth is in LogDCFLLogDCFL
    corecore