774 research outputs found
Evaluating Matrix Circuits
The circuit evaluation problem (also known as the compressed word problem)
for finitely generated linear groups is studied. The best upper bound for this
problem is , which is shown by a reduction to polynomial
identity testing. Conversely, the compressed word problem for the linear group
is equivalent to polynomial identity testing. In
the paper, it is shown that the compressed word problem for every finitely
generated nilpotent group is in . Within
the larger class of polycyclic groups we find examples where the compressed
word problem is at least as hard as polynomial identity testing for skew
arithmetic circuits
Lessons from obesity prevention for the prevention of mental disorders: The primordial prevention approach
Background: Emerging evidence supports a relationship between risk factors for obesity and the genesis of the common mental disorders, depression and anxiety. This suggests common mental disorders should be considered as a form of non-communicable disease, preventable through the modification of lifestyle behaviours, particularly diet and physical activity.Discussion: Obesity prevention research since the 1970\u27s represents a considerable body of knowledge regarding strategies to modify diet and physical activity and so there may be clear lessons from obesity prevention that apply to the prevention of mental disorders. For obesity, as for common mental disorders, adolescence represents a key period of vulnerability. In this paper we briefly discuss relationships between modifiable lifestyle risk factors and mental health, lifestyle risk factor interventions in obesity prevention research, the current state of mental health prevention, and the implications of current applications of systems thinking in obesity prevention research for lifestyle interventions.Summary: We propose a potential focus for future mental health promotion interventions and emphasise the importance of lessons available from other lifestyle modification intervention programmes
Polynomial Time Algorithms for Branching Markov Decision Processes and Probabilistic Min(Max) Polynomial Bellman Equations
We show that one can approximate the least fixed point solution for a
multivariate system of monotone probabilistic max(min) polynomial equations,
referred to as maxPPSs (and minPPSs, respectively), in time polynomial in both
the encoding size of the system of equations and in log(1/epsilon), where
epsilon > 0 is the desired additive error bound of the solution. (The model of
computation is the standard Turing machine model.) We establish this result
using a generalization of Newton's method which applies to maxPPSs and minPPSs,
even though the underlying functions are only piecewise-differentiable. This
generalizes our recent work which provided a P-time algorithm for purely
probabilistic PPSs.
These equations form the Bellman optimality equations for several important
classes of infinite-state Markov Decision Processes (MDPs). Thus, as a
corollary, we obtain the first polynomial time algorithms for computing to
within arbitrary desired precision the optimal value vector for several classes
of infinite-state MDPs which arise as extensions of classic, and heavily
studied, purely stochastic processes. These include both the problem of
maximizing and mininizing the termination (extinction) probability of
multi-type branching MDPs, stochastic context-free MDPs, and 1-exit Recursive
MDPs.
Furthermore, we also show that we can compute in P-time an epsilon-optimal
policy for both maximizing and minimizing branching, context-free, and
1-exit-Recursive MDPs, for any given desired epsilon > 0. This is despite the
fact that actually computing optimal strategies is Sqrt-Sum-hard and
PosSLP-hard in this setting.
We also derive, as an easy consequence of these results, an FNP upper bound
on the complexity of computing the value (within arbitrary desired precision)
of branching simple stochastic games (BSSGs)
On Resource-bounded versions of the van Lambalgen theorem
The van Lambalgen theorem is a surprising result in algorithmic information
theory concerning the symmetry of relative randomness. It establishes that for
any pair of infinite sequences and , is Martin-L\"of random and
is Martin-L\"of random relative to if and only if the interleaved sequence
is Martin-L\"of random. This implies that is relative random
to if and only if is random relative to \cite{vanLambalgen},
\cite{Nies09}, \cite{HirschfeldtBook}. This paper studies the validity of this
phenomenon for different notions of time-bounded relative randomness.
We prove the classical van Lambalgen theorem using martingales and Kolmogorov
compressibility. We establish the failure of relative randomness in these
settings, for both time-bounded martingales and time-bounded Kolmogorov
complexity. We adapt our classical proofs when applicable to the time-bounded
setting, and construct counterexamples when they fail. The mode of failure of
the theorem may depend on the notion of time-bounded randomness
The Impatient May Use Limited Optimism to Minimize Regret
Discounted-sum games provide a formal model for the study of reinforcement
learning, where the agent is enticed to get rewards early since later rewards
are discounted. When the agent interacts with the environment, she may regret
her actions, realizing that a previous choice was suboptimal given the behavior
of the environment. The main contribution of this paper is a PSPACE algorithm
for computing the minimum possible regret of a given game. To this end, several
results of independent interest are shown. (1) We identify a class of
regret-minimizing and admissible strategies that first assume that the
environment is collaborating, then assume it is adversarial---the precise
timing of the switch is key here. (2) Disregarding the computational cost of
numerical analysis, we provide an NP algorithm that checks that the regret
entailed by a given time-switching strategy exceeds a given value. (3) We show
that determining whether a strategy minimizes regret is decidable in PSPACE
Surface states in nearly modulated systems
A Landau model is used to study the phase behavior of the surface layer for
magnetic and cholesteric liquid crystal systems that are at or near a Lifshitz
point marking the boundary between modulated and homogeneous bulk phases. The
model incorporates surface and bulk fields and includes a term in the free
energy proportional to the square of the second derivative of the order
parameter in addition to the usual term involving the square of the first
derivative. In the limit of vanishing bulk field, three distinct types of
surface ordering are possible: a wetting layer, a non-wet layer having a small
deviation from bulk order, and a different non-wet layer with a large deviation
from bulk order which decays non-monotonically as distance from the wall
increases. In particular the large deviation non-wet layer is a feature of
systems at the Lifshitz point and also those having only homogeneous bulk
phases.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Systematic review of mental health and well-being outcomes following community-based obesity prevention interventions among adolescents
This paper aimed to systematically evaluate the mental health and well-being outcomes observed in previous community-based obesity prevention interventions in adolescent populations
A parameterized halting problem, the linear time hierarchy, and the MRDP theorem
The complexity of the parameterized halting problem for nondeterministic Turing machines p-Halt is known to be related to the question of whether there are logics capturing various complexity classes [10]. Among others, if p-Halt is in para-AC0, the parameterized version of the circuit complexity class AC0, then AC0, or equivalently, (+, x)-invariant FO, has a logic. Although it is widely believed that p-Halt ∉. para-AC0, we show that the problem is hard to settle by establishing a connection to the question in classical complexity of whether NE ⊈ LINH. Here, LINH denotes the linear time hierarchy.
On the other hand, we suggest an approach toward proving NE ⊈ LINH using bounded arithmetic. More specifically, we demonstrate that if the much celebrated MRDP (for Matiyasevich-Robinson-Davis-Putnam) theorem can be proved in a certain fragment of arithmetic, then NE ⊈ LINH. Interestingly, central to this result is a para-AC0 lower bound for the parameterized model-checking problem for FO on arithmetical structures.Peer ReviewedPostprint (author's final draft
Balancing Bounded Treewidth Circuits
Algorithmic tools for graphs of small treewidth are used to address questions
in complexity theory. For both arithmetic and Boolean circuits, it is shown
that any circuit of size and treewidth can be
simulated by a circuit of width and size , where , if , and otherwise. For our main construction,
we prove that multiplicatively disjoint arithmetic circuits of size
and treewidth can be simulated by bounded fan-in arithmetic formulas of
depth . From this we derive the analogous statement for
syntactically multilinear arithmetic circuits, which strengthens a theorem of
Mahajan and Rao. As another application, we derive that constant width
arithmetic circuits of size can be balanced to depth ,
provided certain restrictions are made on the use of iterated multiplication.
Also from our main construction, we derive that Boolean bounded fan-in circuits
of size and treewidth can be simulated by bounded fan-in
formulas of depth . This strengthens in the non-uniform setting
the known inclusion that . Finally, we apply our
construction to show that {\sc reachability} for directed graphs of bounded
treewidth is in
- …
