666 research outputs found

    Phase transition in a class of non-linear random networks

    Full text link
    We discuss the complex dynamics of a non-linear random networks model, as a function of the connectivity k between the elements of the network. We show that this class of networks exhibit an order-chaos phase transition for a critical connectivity k = 2. Also, we show that both, pairwise correlation and complexity measures are maximized in dynamically critical networks. These results are in good agreement with the previously reported studies on random Boolean networks and random threshold networks, and show once again that critical networks provide an optimal coordination of diverse behavior.Comment: 9 pages, 3 figures, revised versio

    Quantum network architecture of tight-binding models with substitution sequences

    Full text link
    We study a two-spin quantum Turing architecture, in which discrete local rotations \alpha_m of the Turing head spin alternate with quantum controlled NOT-operations. Substitution sequences are known to underlie aperiodic structures. We show that parameter inputs \alpha_m described by such sequences can lead here to a quantum dynamics, intermediate between the regular and the chaotic variant. Exponential parameter sensitivity characterizing chaotic quantum Turing machines turns out to be an adequate criterion for induced quantum chaos in a quantum network.Comment: Accepted for publication in J. mod. Optics [Proc. Workshop "Entanglement and Decoherence", Gargnano (Italy), Sept 1999], 3 figure

    Dynamical estimates of chaotic systems from Poincar\'e recurrences

    Full text link
    We show that the probability distribution function that best fits the distribution of return times between two consecutive visits of a chaotic trajectory to finite size regions in phase space deviates from the exponential statistics by a small power-law term, a term that represents the deterministic manifestation of the dynamics, which can be easily experimentally detected and theoretically estimated. We also provide simpler and faster ways to calculate the positive Lyapunov exponents and the short-term correlation function by either realizing observations of higher probable returns or by calculating the eigenvalues of only one very especial unstable periodic orbit of low-period. Finally, we discuss how our approaches can be used to treat data coming from complex systems.Comment: subm. for publication. Accepted fpr publication in Chao

    Newtonian and Pseudo-Newtonian Hill Problem

    Full text link
    A pseudo-Newtonian Hill problem based on the Paczynski-Wiita pseudo-Newtonian potential that reproduces general relativistic effects is presented and compared with the usual Newtonian Hill problem. Poincare maps, Lyapunov exponents and fractal escape techniques are employed to study bounded and unbounded orbits. In particular we consider the systems composed by Sun, Earth and Moon and composed by the Milky Way, the M2 cluster and a star. We find that some pseudo-Newtonian systems - including the M2 system - are more stable than their Newtonian equivalent.Comment: 12 pages, 4 figures, 1 tabl

    Delay-Coordinates Embeddings as a Data Mining Tool for Denoising Speech Signals

    Full text link
    In this paper we utilize techniques from the theory of non-linear dynamical systems to define a notion of embedding threshold estimators. More specifically we use delay-coordinates embeddings of sets of coefficients of the measured signal (in some chosen frame) as a data mining tool to separate structures that are likely to be generated by signals belonging to some predetermined data set. We describe a particular variation of the embedding threshold estimator implemented in a windowed Fourier frame, and we apply it to speech signals heavily corrupted with the addition of several types of white noise. Our experimental work seems to suggest that, after training on the data sets of interest,these estimators perform well for a variety of white noise processes and noise intensity levels. The method is compared, for the case of Gaussian white noise, to a block thresholding estimator

    Global Hopf bifurcation in the ZIP regulatory system

    Get PDF
    Regulation of zinc uptake in roots of Arabidopsis thaliana has recently been modeled by a system of ordinary differential equations based on the uptake of zinc, expression of a transporter protein and the interaction between an activator and inhibitor. For certain parameter choices the steady state of this model becomes unstable upon variation in the external zinc concentration. Numerical results show periodic orbits emerging between two critical values of the external zinc concentration. Here we show the existence of a global Hopf bifurcation with a continuous family of stable periodic orbits between two Hopf bifurcation points. The stability of the orbits in a neighborhood of the bifurcation points is analyzed by deriving the normal form, while the stability of the orbits in the global continuation is shown by calculation of the Floquet multipliers. From a biological point of view, stable periodic orbits lead to potentially toxic zinc peaks in plant cells. Buffering is believed to be an efficient way to deal with strong transient variations in zinc supply. We extend the model by a buffer reaction and analyze the stability of the steady state in dependence of the properties of this reaction. We find that a large enough equilibrium constant of the buffering reaction stabilizes the steady state and prevents the development of oscillations. Hence, our results suggest that buffering has a key role in the dynamics of zinc homeostasis in plant cells.Comment: 22 pages, 5 figures, uses svjour3.cl

    Cryptanalyzing a discrete-time chaos synchronization secure communication system

    Full text link
    This paper describes the security weakness of a recently proposed secure communication method based on discrete-time chaos synchronization. We show that the security is compromised even without precise knowledge of the chaotic system used. We also make many suggestions to improve its security in future versions.Comment: 11 pages, 3 figures, latex forma

    Bifurcation Phenomena in Two-Dimensional Piecewise Smooth Discontinuous Maps

    Get PDF
    In recent years the theory of border collision bifurcations has been developed for piecewise smooth maps that are continuous across the border, and has been successfully applied to explain nonsmooth bifurcation phenomena in physical systems. However, many switching dynamical systems have been found to yield two-dimensional piecewise smooth maps that are discontinuous across the border. The theory for understanding the bifurcation phenomena in such systems is not available yet. In this paper we present the first approach to the problem of analysing and classifying the bifurcation phenomena in two-dimensional discontinuous maps, based on a piecewise linear approximation in the neighborhood of the border. We explain the bifurcations occurring in the static VAR compensator used in electrical power systems, using the theory developed in this paper. This theory may be applied similarly to other systems that yield two-dimensional discontinuous maps

    Self-similarities in the frequency-amplitude space of a loss-modulated CO2_2 laser

    Full text link
    We show the standard two-level continuous-time model of loss-modulated CO2_2 lasers to display the same regular network of self-similar stability islands known so far to be typically present only in discrete-time models based on mappings. For class B laser models our results suggest that, more than just convenient surrogates, discrete mappings in fact could be isomorphic to continuous flows.Comment: (5 low-res color figs; for ALL figures high-res PDF: http://www.if.ufrgs.br/~jgallas/jg_papers.html

    Bifurcations in the Lozi map

    Get PDF
    We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.Comment: 17 pages, 12 figure
    corecore