523 research outputs found
JUDICIALIZATION AND IMPLEMENTATION OF RELIGIOUS MINORITY RIGHTS IN TURKEY: CASE STUDIES FROM THE EUROPEAN COURT OF HUMAN RIGHTS
The role of courts in shaping public policy has undoubtedly increased over at least the last two decades. Several factors have contributed to this trend, including the rise of democracy around the globe as previously authoritarian regimes open up and shift toward rule of law and democratic processes. Individuals and groups that have found themselves in a position to be discriminated against by the government and/or society, often due to their religious, ethnic, or cultural identity, have more frequently begun to take their grievances to domestic and international courts, as opposed to trying to grapple with solutions in the political realm. This process is known as judicialization.
While this trend of applying to international courts is on the rise by individuals and groups, the question arises about the efficiency and effectiveness of judicial processes in achieving hoped-for rights recognition. This is a reflection of state responses (specifically, implementation, execution, or compliance) to obligations as high contracting parties to such international human rights tribunals. This study examines 19 adverse judgments against Turkey in the European Court of Human Rights (1996-2016) that were brought forward by applicants that do not adhere to the majority religious identity in Turkey (Hanefi Sunni) to better understand what institutional factors have caused these cases to emerge and the elements that have helped or hindered full implementation in the post-judgment stage.
This examination demonstrates that identity construction, both self-produced and externally imposed, is inextricably linked to the formation of domestic policies towards non-majoritarian religious groups in Turkey. Furthermore, it argues that institutional configuration and path dependence have interfered with comprehensive changes towards a pluralistic and just domestic human rights regime, as envisioned and mandated by the Council of Europe
Multiple behaviors for turning performance of Pacific bluefin tuna (Thunnus orientalis)
Tuna are known for exceptional swimming speeds, which are possible because of their thunniform lift-based propulsion, large muscle mass and rigid fusiform body. A rigid body should restrict maneuverability with regard to turn radius and turn rate. To test if turning maneuvers by the Pacific bluefin tuna (Thunnus orientalis) are constrained by rigidity, captive animals were videorecorded overhead as the animals routinely swam around a large circular tank or during feeding bouts. Turning performance was classified into three different types: (1) glide turns, where the tuna uses the caudal fin as a rudder; (2) powered turns, where the animal uses continuous near symmetrical strokes of the caudal fin through the turn; and (3) ratchet turns, where the overall global turn is completed by a series of small local turns by asymmetrical stokes of the caudal fin. Individual points of the rostrum, peduncle and tip of the caudal fin were tracked and analyzed. Frame-by-frame analysis showed that the ratchet turn had the fastest turn rate for all points with a maximum of 302 deg s(-1). During the ratchet turn, the rostrum exhibited a minimum global 0.38 body length turn radius. The local turn radii were only 18.6% of the global ratchet turn. The minimum turn radii ranged from 0.4 to 1.7 body lengths. Compared with the performance of other swimmers, the increased flexion of the peduncle and tail and the mechanics of turning behaviors used by tuna overcomes any constraints to turning performance from the rigidity of the anterior body morphology
Premature ovarian failure and ovarian autoimmunity
Premature ovarian failure (POF) is defined as a syndrome characterized by
menopause before the age of 40 yr. The patients suffer from anovulation
and hypoestrogenism. Approximately 1% of women will experience menopause
before the age of 40 yr. POF is a heterogeneous disorder with a
multicausal pathogenesis involving chromosomal, genetic, enzymatic,
infectious, and iatrogenic causes. There remains, however, a group of POF
patients without a known etiology, the so-called "idiopathic" form. An
autoimmune etiology is hypothesized for the POF cases with a concomitant
Addison's disease and/or oophoritis. It is concluded in this review that
POF in association with adrenal autoimmunity and/or Addison's disease
(2-10% of the idiopathic POF patients) is indeed an autoimmune disease.
The following evidence warrants this view: 1) The presence of
autoantibodies to steroid-producing cells in these patients; 2) The
characterization of shared autoantigens between adrenal and ovarian
steroid-producing cells; 3) The histological picture of the ovaries of
such cases (lymphoplasmacellular infiltrate around steroid-producing
cells); 4) The existence of various autoimmune animal models for this
syndrome, which underlines the autoimmune nature of the disease. There is
some circumstantial evidence for an autoimmune pathogenesis in idiopathic
POF patients in the absence of adrenal autoimmunity or Addison's disease.
Arguments in support of this are: 1) The presence of cellular immune
abnormalities in this POF patient group reminiscent of endocrine
autoimmune diseases such as IDDM, Graves' disease, and Addison's disease;
2) The more than normal association with IDDM and myasthenia gravis. Data
on the presence of various ovarian autoantibodies and anti-receptor
antibodies in these patients are, however, inconclusive and need further
evaluation. A strong argument against an autoimmune pathogenesis of POF in
these patients is the nearly absent histological confirmation (the
presence of an oophoritis) in these cases (< 3%). However, in animal
models using ZP immunization, similar follicular depletion and fibrosis
(as in the POF women) can be detected. Accepting the concept that POF is a
heterogenous disorder in which some of the idiopathic forms are based on
an abnormal self-recognition by th
Movements of marine fish and decapod crustaceans: Process, theory and application
Many marine species have a multi-phase ontogeny, with each phase usually associated with a spatially and temporally discrete set of movements. For many fish and decapod crustaceans that live inshore, a tri-phasic life cycle is widespread, involving: (1) the movement of planktonic eggs and larvae to nursery areas; (2) a range of routine shelter and foraging movements that maintain a home range; and (3) spawning migrations away from the home range to close the life cycle. Additional complexity is found in migrations that are not for the purpose of spawning and movements that result in a relocation of the home range of an individual that cannot be defined as an ontogenetic shift. Tracking and tagging studies confirm that life cycle movements occur across a wide range of spatial and temporal scales. This dynamic multi-scale complexity presents a significant problem in selecting appropriate scales for studying highly mobile marine animals. We address this problem by first comprehensively reviewing the movement patterns of fish and decapod crustaceans that use inshore areas and present a synthesis of life cycle strategies, together with five categories of movement. We then examine the scale-related limitations of traditional approaches to studies of animal-environment relationships. We demonstrate that studies of marine animals have rarely been undertaken at scales appropriate to the way animals use their environment and argue that future studies must incorporate animal movement into the design of sampling strategies. A major limitation of many studies is that they have focused on: (1) a single scale for animals that respond to their environment at multiple scales or (2) a single habitat type for animals that use multiple habitat types. We develop a hierarchical conceptual framework that deals with the problem of scale and environmental heterogeneity and we offer a new definition of 'habitat' from an organism-based perspective. To demonstrate that the conceptual framework can be applied, we explore the range of tools that are currently available for both measuring animal movement patterns and for mapping and quantifying marine environments at multiple scales. The application of a hierarchical approach, together with the coordinated integration of spatial technologies offers an unprecedented opportunity for researchers to tackle a range of animal-environment questions for highly mobile marine animals. Without scale-explicit information on animal movements many marine conservation and resource management strategies are less likely to achieve their primary objectives
Building Climate Resilience in the Blue Nile/Abay Highlands: A Role for Earth System Sciences
The Blue Nile (Abay) Highlands of Ethiopia are characterized by significant interannual climate variability, complex topography and associated local climate contrasts, erosive rains and erodible soils, and intense land pressure due to an increasing population and an economy that is almost entirely dependent on smallholder, low-input agriculture. As a result, these highland zones are highly vulnerable to negative impacts of climate variability. As patterns of variability and precipitation intensity alter under anthropogenic climate change, there is concern that this vulnerability will increase, threatening economic development and food security in the region. In order to overcome these challenges and to enhance sustainable development in the context of climate change, it is necessary to establish climate resilient development strategies that are informed by best-available Earth System Science (ESS) information. This requirement is complicated by the fact that climate projections for the Abay Highlands contain significant and perhaps irreducible uncertainties. A critical challenge for ESS, then, is to generate and to communicate meaningful information for climate resilient development in the context of a highly uncertain climate forecast. Here we report on a framework for applying ESS to climate resilient development in the Abay Highlands, with a focus on the challenge of reducing land degradation
Recommended from our members
The interaction of adverse childhood experiences and gender as risk factors for depression and anxiety disorders in US adults: a cross-sectional study
Background
Exposure to adverse childhood experiences (ACEs) and being female are distinct risk factors for having a major depressive episode (MDE) or an anxiety disorder (AD) in adulthood, but it is unclear whether these two risk factors are synergistic. The purpose of this study was to determine whether exposure to ACEs and being female are more than additive (synergistic) in their association with MDE and AD in US adults.
Methods
We pooled cross-sectional survey data in the Midlife in the United States study from two nationally-representative cohorts of English-speaking US adults. Data from the first cohort were collected in 2004–2006 and from the second in 2011–2014. Data from both cohorts included the 12-month prevalence of MDE and AD (generalized anxiety disorder or panic disorder) assessed with the Composite International Diagnostic Interview Short Form, gender (here termed female and male), and the count of five categories of exposure to ACEs: physical, sexual, or emotional abuse; household alcohol or substance abuse; and parental separation or divorce.
Results
Of the 5834 survey respondents, 4344 (74.5%) with complete data on ACEs were included in the analysis. Mean (SD) age was 54.1 (13.8) years and 53.9% were female. The prevalences of MDE, AD, and exposure to 3–5 categories of ACEs were 13.7, 10.0, and 12.5%, respectively. After adjusting for covariates (age, race, and current and childhood socioeconomic disadvantage), for those with both risk factors (female and 3–5 ACEs) the prevalence of MDE was 26.9%. This was 10.2% (95% CI: 1.8, 18.5%) higher than the expected prevalence based on the additive associations of the two risk factors. The adjusted prevalence of AD among females with 3–5 ACEs was 21.9%, which was 11.4% (95% CI: 4.0, 18.9%) higher than the expected prevalence.
Conclusions
For both MDE and AD, there was synergy between the two risk factors of exposure to ACEs and being female. Identification and treatment of MDE and AD may benefit from understanding the mechanisms involved in the synergistic interaction of gender with ACEs
Relevance of Rheological Properties of Sodium Alginate in Solution to Calcium Alginate Gel Properties
Abstract. The purpose of this study is to determine whether sodium alginate solutions' rheological parameters are meaningful relative to sodium alginate's use in the formulation of calcium alginate gels. Calcium alginate gels were prepared from six different grades of sodium alginate (FMC Biopolymer), one of which was available in ten batches. Cylindrical gel samples were prepared from each of the gels and subjected to compression to fracture on an Instron Universal Testing Machine, equipped with a 1-kN load cell, at a cross-head speed of 120 mm/min. Among the grades with similar % G, (grades 1, 3, and 4), there is a significant correlation between deformation work (L E ) and apparent viscosity (η app ). However, the results for the partial correlation analysis for all six grades of sodium alginate show that L E is significantly correlated with % G, but not with the rheological properties of the sodium alginate solutions. Studies of the ten batches of one grade of sodium alginate show that η app of their solutions did not correlate with L E while tan δ was significantly, but minimally, correlated to L E . These results suggest that other factors-polydispersity and the randomness of guluronic acid sequencing-are likely to influence the mechanical properties of the resultant gels. In summary, the rheological properties of solutions for different grades of sodium alginate are not indicative of the resultant gel properties. Interbatch differences in the rheological behavior for one specific grade of sodium alginate were insufficient to predict the corresponding calcium alginate gel's mechanical properties
Brain Dynamics Underlying the Nonlinear Threshold for Access to Consciousness
When a flashed stimulus is followed by a backward mask, subjects fail to perceive it unless the target-mask interval exceeds a threshold duration of about 50 ms. Models of conscious access postulate that this threshold is associated with the time needed to establish sustained activity in recurrent cortical loops, but the brain areas involved and their timing remain debated. We used high-density recordings of event-related potentials (ERPs) and cortical source reconstruction to assess the time course of human brain activity evoked by masked stimuli and to determine neural events during which brain activity correlates with conscious reports. Target-mask stimulus onset asynchrony (SOA) was varied in small steps, allowing us to ask which ERP events show the characteristic nonlinear dependence with SOA seen in subjective and objective reports. The results separate distinct stages in mask-target interactions, indicating that a considerable amount of subliminal processing can occur early on in the occipito-temporal pathway (<250 ms) and pointing to a late (>270 ms) and highly distributed fronto-parieto-temporal activation as a correlate of conscious reportability
A Multi-Center, Qualitative Assessment of Pediatrician and Maternal Perspectives on Rotavirus Vaccines and the Detection of Porcine circovirus
<p>Abstract</p> <p>Background</p> <p>In 2010, researchers using novel laboratory techniques found that US-licensed rotavirus vaccines contain DNA or DNA fragments from <it>Porcine circovirus </it>(PCV), a virus common among pigs but not believed to cause illness in humans. We sought to understand pediatricians' and mothers' perspectives on this finding.</p> <p>Methods</p> <p>We conducted three iterations of focus groups for pediatricians and non-vaccine hesitant mothers in Seattle, WA, Cincinnati, OH, and Rochester, NY. Focus groups explored perceptions of rotavirus disease, rotavirus vaccination, and attitudes about the detection of PCV material in rotavirus vaccines.</p> <p>Results</p> <p>Pediatricians understood firsthand the success of rotavirus vaccines in preventing severe acute gastroenteritis among infants and young children. They measured this benefit against the theoretical risk of DNA material from PCV in rotavirus vaccines, determining overall that the PCV finding was of no clinical significance. Particularly influential was the realization that the large, randomized clinical trials that found both vaccines to be highly effective and safe were conducted with DNA material from PCV already in the vaccines.</p> <p>Most mothers supported the ideal of full disclosure regarding vaccination risks and benefits. However, with a scientific topic of this complexity, simplified information regarding PCV material in rotavirus vaccines seemed frightening and suspicious, and detailed information was frequently overwhelming. Mothers often remarked that if they did not understand a medical or technical topic regarding their child's health, they relied on their pediatrician's guidance.</p> <p>Many mothers and pediatricians were also concerned that persons who abstain from pork consumption for religious or personal reasons may have unsubstantiated fears of the PCV finding.</p> <p>Conclusions</p> <p>Pediatricians considered the detection of DNA material from PCV in rotavirus vaccines a "non-issue" and reported little hesitation in continuing to recommend the vaccines. Mothers desired transparency, but ultimately trusted their pediatrician's recommendation. Both vaccines are currently approved for their intended use, and no risk of human PCV illness has been reported. Communicating this topic to pediatricians and mothers requires sensitivity to a broad range of technical understanding and personal concerns.</p
Respiratory Virus Infection and Risk of Invasive Meningococcal Disease in Central Ontario, Canada
BACKGROUND: In temperate climates, invasive meningococcal disease (IMD) incidence tends to coincide with or closely follow peak incidence of influenza virus infection; at a seasonal level, increased influenza activity frequently correlates with increased seasonal risk of IMD. METHODS: We evaluated 240 cases of IMD reported in central Ontario, Canada, from 2000 to 2006. Associations between environmental and virological (influenza A, influenza B and respiratory syncytial virus (RSV)) exposures and IMD incidence were evaluated using negative binomial regression models controlling for seasonal oscillation. Acute effects of weekly respiratory virus activity on IMD risk were evaluated using a matched-period case-crossover design with random directionality of control selection. Effects were estimated using conditional logistic regression. RESULTS: Multivariable negative binomial regression identified elevated IMD risk with increasing influenza A activity (per 100 case increase, incidence rate ratio = 1.18, 95% confidence interval (CI): 1.06, 1.31). In case-crossover models, increasing weekly influenza A activity was associated with an acute increase in the risk of IMD (per 100 case increase, odds ratio (OR) = 2.03, 95% CI: 1.28 to 3.23). Increasing weekly RSV activity was associated with increased risk of IMD after adjusting for RSV activity in the previous 3 weeks (per 100 case increase, OR = 4.31, 95% CI: 1.14, 16.32). No change in disease risk was seen with increasing influenza B activity. CONCLUSIONS: We have identified an acute effect of influenza A and RSV activity on IMD risk. If confirmed, these finding suggest that influenza vaccination may have the indirect benefit of reducing IMD risk
- …
