469 research outputs found
Innate immune mechanisms underlying sterile inflammation and systemic sclerosis
Thesis (Ph.D.)--Boston UniversitySystemic sclerosis (SSc) is a rare autoimmune disease characterized by peripheral vascular injury, fibrosis of the skin and other organs, and production of autoantibodies. Recent work by our group and others have suggested a role for innate immunity, perhaps activated by vascular injury, in driving the inflammation and fibrosis seen in the skin, lungs, and other tissues involved in this disease. The mechanisms driving the activation of innate immunity and the effects of this activation on SSc pathogenesis remain unclear.
Toll-like receptors (TLRs) are an important family of receptors that drive innate immune responses after recognition of foreign or endogenous antigens. TLRs have been implicated in the pathogenesis of SSc and other autoimmune skin diseases. Using a muscle injury mouse model, we investigated the activation of TLRs after sterile injury. This study demonstrated that sterile muscle injury activated TLR3 signaling, which played an important role in cytokine responses and tissue repair. This study supported data from our group that showed that TLR3 activation might drive excess tissue repair in SSc skin.
TLR9 has also been implicated in SSc pathogenesis. Therefore, we examined TLR9-mediated immune responses in the skin. Contrary to the fibrotic response of TLR3, chronic TLR9 activation induced severe inflammation characterized by the specific recruitment of inflammatory monocytes into the skin. We also determined that dermal macrophages were responsible for the strong cytokine and chemokine response, which may, collectively, recruit the monocytes.
Macrophages and other immune cells are highly recruited to sites of perivascular inflammation in SSc skin. Thus, we assessed chemokine expression in SSc skin to determine their role in the pathogenesis. Chemokine expression analysis showed only a select group of chemokines upregulated, and suggested an important role specifically for CCL19 in immune cell recruitment and as a marker of perivascular inflammation.
Overall, these studies demonstrate how various triggers of immune activation induce specific inflammatory or fibrotic immune responses, mainly driven by macrophages in the skin, providing new insight of how multifaceted activation of innate immunity could lead to the complex pathogenesis of SSc skin disease
BLUF Domain Function Does Not Require a Metastable Radical Intermediate State
BLUF
(blue light using flavin) domain proteins are an important
family of blue light-sensing proteins which control a wide variety
of functions in cells. The primary light-activated step in the BLUF
domain is not yet established. A number of experimental and theoretical
studies points to a role for photoinduced electron transfer (PET)
between a highly conserved tyrosine and the flavin chromophore to
form a radical intermediate state. Here we investigate the role of
PET in three different BLUF proteins, using ultrafast broadband transient
infrared spectroscopy. We characterize and identify infrared active
marker modes for excited and ground state species and use them to
record photochemical dynamics in the proteins. We also generate mutants
which unambiguously show PET and, through isotope labeling of the
protein and the chromophore, are able to assign modes characteristic
of both flavin and protein radical states. We find that these radical
intermediates are not observed in two of the three BLUF domains studied,
casting doubt on the importance of the formation of a population of
radical intermediates in the BLUF photocycle. Further, unnatural amino
acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines,
thus modifying the driving force for the proposed electron transfer
reaction; the rate changes observed are also not consistent with a
PET mechanism. Thus, while intermediates of PET reactions can be observed
in BLUF proteins they are not correlated with photoactivity, suggesting
that radical intermediates are not central to their operation. Alternative
nonradical pathways including a keto–enol tautomerization induced
by electronic excitation of the flavin ring are considered
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
We describe the method devised to reconstruct inclined cosmic-ray air showers
with zenith angles greater than detected with the surface array of
the Pierre Auger Observatory. The measured signals at the ground level are
fitted to muon density distributions predicted with atmospheric cascade models
to obtain the relative shower size as an overall normalization parameter. The
method is evaluated using simulated showers to test its performance. The energy
of the cosmic rays is calibrated using a sub-sample of events reconstructed
with both the fluorescence and surface array techniques. The reconstruction
method described here provides the basis of complementary analyses including an
independent measurement of the energy spectrum of ultra-high energy cosmic rays
using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of
Cosmology and Astroparticle Physics (JCAP
- …
