3,173 research outputs found

    Variations in water use by a mature mangrove of Avicennia germinans, French Guiana

    Get PDF
    In the tropical intertidal zones, little is known on water uptake by mangroves. Transpiration rates are generally measured at leaf level, but few studies exist on water use at tree or stand levels. The objective of this study was to measure sap flow in trees of different sizes to appreciate the range of variation in water use that may exist in a site dominated by 80% mature Avicennia germinans. The results showed that from the dry to the wet season the mean water use increased from 3.2 to 5.3 dm3 d−1 in small trees (DBH ∼ 13 cm), from 11.5 to 30.8 dm3 d−1 in medium trees (∼24 cm) and from 40.8 to 64.1 dm3 d−1 in large ones (∼45 cm). Sapwood remained active up to a depth of 8 cm with radial variations within the stem. Weak correlations were obtained with VPD and net radiation. This study confirmed that transpiration was larger under low levels of salinity. Water use at stand level (∼1900 living stems ha−1) was estimated to be in the range of 5.8 to 11.8 m3 ha−1 d−1 according to the season

    Hydrodynamic attraction of swimming microorganisms by surfaces

    Full text link
    Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their re-orientation in the direction parallel to the surfaces, as well as their attraction by the closest wall. A model is derived for the steady-state distribution of swimming cells, which compares favorably with our measurements. We exploit our data to estimate the flagellar propulsive force in swimming E. coli

    VEGF-A165b protects against proteinuria in a mouse model with progressive depletion of all endogenous VEGF-A splice isoforms from the kidney

    Get PDF
    Chronic kidney disease (CKD) is strongly associated with a decrease in the expression of VEGF-A. However, little is known about the contribution of VEGF-A splice isoforms to kidney physiology and pathology. Previous studies suggest that the splice isoform VEGF-A165b (resulting from alternative usage of a 3’ splice site in the terminal exon) is protective for kidney function. We show here, in a quad-transgenic model, that over-expression of VEGF-A165b alone is sufficient to rescue the increase in proteinuria as well as glomerular water permeability in the context of progressive depletion of all VEGF-A isoforms from the podocytes. Ultrastructural studies show that the glomerular basement membrane is thickened, podocyte slit width is increased and sub-podocyte space coverage is reduced when VEGF-A is depleted, all of which are rescued in VEGF-A165b over-expressors. VEGF-A165b restores the expression of PECAM-1 in glomerular endothelial cells and glomerular capillary circumference. Mechanistically, it increases VEGFR2 expression both in vivo and in vitro and down-regulates genes involved in migration and proliferation of endothelial cells, otherwise up-regulated by the canonical isoform VEGF-A165. Our study indicates that manipulation of VEGF-A splice isoforms could be a novel therapeutic avenue in chronic glomerular disease

    Transforming Futures Through Speculative YPAR: The Garage Story

    Get PDF
    The COVID-19 pandemic caused disruptions for young people across the U.S., exacerbating feelings of isolation and disconnection. In response, the [Youth] Think Tank—a paid Youth Participatory Action Research (YPAR) internship—was launched in [city name]. Teens from diverse backgrounds came together to address the issues they and their peers were facing. This article chronicles the journey of the [Youth] Think Tank through each phase of its YPAR project, following the design process step-by-step as the group developed The [Hub]: a youth-designed space that fosters connection, safety, and belonging within the community. Starting from the program\u27s inception, we trace how the teens identified their peers\u27 needs, envisioned an inclusive community space, and translated those ideas into actionable designs. This article also explores the integration of Speculative YPAR, a creative approach that empowered teens to imagine futures unconstrained by current limitations and to envision a space that could serve their community. By blending research, imagination, and practical action, the [Youth] Think Tank redefined community engagement and demonstrated the power of youth-led projects in reshaping post-pandemic futures. This chronological account of the project\u27s design phases offers a unique insight into how young people can transform their communities when given the freedom to lead

    Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments—a Review

    Get PDF
    The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and viruses into the water column during sediment resuspension also represents a risk to water quality. In conclusion, our poor process level understanding of viral/bacterial-sediment interactions combined with methodological challenges is limiting the accurate source apportionment and quantitative microbial risk assessment for pathogenic organisms associated with sediments in aquatic environments

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
    corecore